Camgora.ru

Автомобильный журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дроссельная заслонка автомобиля: устройство, принцип работы, обслуживание

Дроссельная заслонка автомобиля: устройство, принцип работы, обслуживание

Устройство дросселя


Дроссель состоит из следующих элементов:

  • корпус – металлическая конструкция, которая объединяет все элементы механизма;
  • непосредственно заслонка – круглая задвижка, которая вращается в одной плоскости на специальной оси;
  • ось – своеобразный вентиль, металлический удлиненный цилиндр, на котором вращается задвижка;
  • датчик задвижки – прибор, который передает информацию о положении задвижки на блок управления;
  • регулятор холостого хода – дополнительная трубка, проложенная в обход задвижки, обеспечивающий цилиндрогруппу воздухом во время холостого хода.

Электроника и механика плюсы и минусы

У небезупречной механики по сравнению с электроникой оказалось намного меньше недостатков. Один – электродвигатель, с помощью которого должна отрываться заслонка в узле. Как только в нем происходят сбои, нарушается работа заслонки, которая все еще нужна для дозированного выпуска воздуха. Трос, который сейчас находится только в механических дросселях, в этом отношении был удобнее. В машинах не самого высокого класса работает недостаточно проработанная программа, которая долго обрабатывает полученные данные (в электронном блоке требует некоторого времени для обработки исходных характеристик). При этом программе нужна нежелательная для водителя пауза. Поэтому дроссель срабатывает с опозданием. Вот и возникает вопрос, нужна ли такая модернизация.

Профессиональный водитель понимает, что при четкой работе программного обеспечения, на качественном автомобиле, дроссель будет всегда открыт вовремя. Да и на машинах эконом класса в обычных условиях такой недостаток практически незаметен. Но в сложных зимних условиях, на скользкой дороге, иногда возникает ситуация, в которой нет времени ждать, пока ЭБУ осмыслит информацию и подаст соответствующий сигнал. Вложенный в ЭБУ механизм предотвращения колесной пробуксовки на старте, не дает возможности моментального получения большой мощности, а это может негативно сказаться на работе двигателя.

Единственный выход из такой ситуации – не всем по карману. Но в автомобилях премиум-класса и программное обеспечение намного лучше, и режим работы силовой установки водитель может установить по собственным предпочтениям. Многое в современных автомобилях изменилось, но не основной механизм работы двигателя, поэтому без дроссельного узла пока нельзя обойтись.

Виды дроссельной заслонки

Дроссельные задвижки бывают нескольких разновидностей.

В зависимости от типа привода их подразделяют на два типа:

  • с механическим приводом;
  • с электрическим приводом;
  • с вакуумным приводом.

В первых ось заслонки приводится в движение посредством подведенного к ней металлического тросика, который соединен с акселератором.

Во вторых ее вращает электрический двигатель, который не соединен непосредственно с акселератором. В некоторых автомобилях за подачу тока на него отвечает электронный блок управления транспортного средства.

Вакуумный привод в автомобильных дросселях сейчас почти нигде не применяется. Однако раньше его использовали на многих моделях карбюраторных моторов. В частности, его можно найти на карбюраторных вариантах «классики» АвтоВАЗа. Принцип работы в данном случае заключается в том, что задвижку поворачивает специальный пневмопривод.


Также следует отметить, что в разных моделях механизмов могут использоваться различные виды датчиков. В настоящее время применяют два:

  • потеницометрический;
  • магниторезистивный.

Первый фактически является переменным резистором. Его конструкция включает в себя проводник, по которому скользят контакты, закрепленные на оси задвижки. Главное достоинство такого типа датчика – точные показания. А главный недостаток – непродолжительный срок службы, обусловленный постоянным механическим контактом элементов конструкции.

Вторая разновидность работает по иному принципу. К оси задвижки подсоединен постоянный магнит, а напротив него расположен проводник, чувствительный к магнитному полю. При повороте заслонки магнитное поле изменяется, а вместе с ним изменяется и сопротивление в проводнике. Этот датчик чуть менее точен, однако более долговечен, поскольку основные элементы его конструкции не соприкасаются во время работы и за счет этого гораздо меньше изнашиваются.

Типичные неисправности

Специалистами было подсчитано, сколько в течение дня водитель нажимает на педаль газа за 30 минут – немногим более 100 раз. А такое совершается каждый день (при регулярном использовании автомобиля). В этом случае нет ничего удивительного в том, что со временем механизм ДЗ начинает давать сбои. Можно выделить несколько основных неисправностей, которые будут рассмотрены далее. Это позволит лучше понять, для чего нужно чистить дроссельную заслонку.

Датчик положения дроссельной заслонки

Именно в нем кроется большая часть проблем. В результате его выхода из строя двигатель начинает работать с перебоями, что проявляется следующими признаками:

  1. Проблемный запуск силового агрегата или он вовсе не желает запускаться.
  2. Мотор глохнет в режиме холостого хода либо обороты слишком высокие.
  3. Наблюдаются рывки и провалы в работе ДВС.
  4. Падает динамика разгона и тяга, причем резко.
  5. Растет расход горючего.
  6. На приборной панели загорается индикатор «Check Engine».

Только все эти перечисленные симптомы не указывают именно на неисправность заслонки, а потому следует проводить диагностику.


Для выявления неисправностей детали необходима диагностика

Засор обходных каналов

Эта проблема не вызывает такого дискомфорта, как поломка сенсора. Но и ее не стоит игнорировать. Обычно такое проявление обусловлено неправильной работой двигателя на холостых оборотах. Поводом проверить дроссельную заслонку послужат провалы, внезапная остановка мотора. Скорее всего, настало время прочистить заслонку.

Подсос воздуха

И такой неприятности имеет место – это свидетельствует о пробое впускного коллектора либо нарушена сама конструкция механизма ДЗ, через которую начинает подсасывать воздух. Это приводит к увеличению количества кислорода в рабочей смеси и обороты растут, когда в этом нет необходимости. Поступление воздуха в цилиндры, минуя фильтр, ничем хорошим не заканчивается.

Нарушение герметичности узла обычно лечится чисткой. Но нельзя исключать прорыва сквозь другие места, помимо самой заслонки. Лучше обратиться к специалистам ближайшего автосервиса – возможно, есть другие проблемы, которые нужно своевременно найти и устранить.

Адаптация дроссельной заслонки

Под этим термином скрывается настройка бортового компьютера на определение корректной связи между положением педали акселератора и ДЗ. Программа сбивается по разным причинам:

  • отключение АКБ от сети;
  • демонтирован блок дроссельной заслонки с целью ремонта или замены;
  • отключение ЭБУ.

Адаптацию лучше доверить специалистам, а времени такая процедура много не занимает. Еще и стоимость приемлема.

Обслуживание и ремонт дроссельной заслонки


Заслонку необходимо время от времени чистить. Это обусловлено двумя факторами:

  • воздухофильтр удерживает в себе не всю пыль и грязь, часть попадает в заслонку и оседает на ее внутренних элементах;
  • при функционировании картера часть из отработанных газов и паров масла также попадает в дроссель, приводя к образованию на нем копоти.

Для чистки потребуется:

  • хлопчатобумажная или льняная ветошь;
  • ватные палочки;
  • набор отверток для демонтажа узла;
  • растворитель (подойдет ацетон, 646).

Вместо растворителя можно взять бензин. Однако следует иметь в виду, что он будет растворять нагар несколько хуже.

Для чистки потребуется выполнить следующие действия:

  • открутить винты, удерживающие воздухофильтр;
  • демонтировать воздушный фильтр;
  • открутить винты, удерживающие заслонку;
  • отсоединить заслонку (при наличии электрических разъемов также их отсоединить);
  • положить узел в небольшую чашку и полностью залить растворителем (обычно для этого достаточно 2 литровых бутылок);
  • продержать так дроссель 5 – 10 минут;
  • извлечь узел из растворителя и удалить грязь с помощью тряпки (в труднодоступных местах – с помощью ватной палочки);
  • произвести сборку механизма в обратном порядке.

Нужно помнить, что схема подключения заслонки на разных моделях авто отличается. Перед началом работы лучше посмотреть фото отсоединенного от двигателя узла или изучить наглядную схему разборки. Это существенно облегчит выполнение процедуры.

Чего не следует делать, так это самостоятельно работать с механизмом, который имеет электропривод – его можно легко повредить. Это касается и электронных приводов (причем даже в большей степени).

Также перед процедурой чистки следует почитать отзывы о вашей модели механизма. Некоторые устройства не переносят замачивания в бензине или растворителе и начинают после него некорректно работать. В частности, такое происходит с заслонками Mitsubishi Lancer 9 4G18.

Надо понимать, что нередко чистка не дает желаемых результатов и мотор продолжает работать некорректно. Это говорит только об одном – задвижка вышла из строя. В таком случае ее ремонтируют или полностью меняют. Если речь идет о заслонке с электронным приводом, проблема может быть в нарушении работы блока управления.

О необходимости чистки или неисправности могут говорить следующие признаки:

  • авто не получается завести с одного раза;
  • двигатель делает рывки на холостых и невысокой скорости;
  • мотор самопроизвольно глохнет;
  • холостые обороты нестабильны.

Назначение, основные конструктивные элементы

Несмотря на то, что подачей воздуха «заведует» целая система, конструктивно она очень проста и основным ее элементом выступает дроссельный узел (многие по старинке называют его дроссельной заслонкой). И даже этот элемент имеет несложную конструкцию.

Принцип работы дроссельной заслонки остался идентичным еще со времен карбюраторных двигателей. Она перекрывает основной воздушный канал, благодаря чему и регулируется количество подаваемого в цилиндры воздуха. Но если эта заслонка раннее входила в конструкцию карбюратора, то в инжекторных двигателях она является полностью отдельным узлом.

Инжекторная система ДВС

Помимо основной задачи – дозировки воздуха для нормального функционирования силового агрегата на любом режиме, эта заслонка также отвечает за поддержание требуемых оборотов коленвала на холостом ходу (ХХ), причем с разной нагрузкой на мотор. Участвует она и в функционировании усилителя тормозной системы.

Устройство дроссельной заслонки – очень простое. Основными ее конструктивными составляющими являются:

  1. Корпус
  2. Заслонка с осью
  3. Механизм привода


Механический дроссельный узел

Дроссели разных типов также могут включать ряд дополнительных элементов – датчики, байпасные каналы, каналы подогрева и т. д. Более подробно конструктивные особенности дроссельных заслонок, применяемых на авто, рассмотрим ниже.

Устанавливается дроссельная заслонка в воздуховоде между фильтрующим элементом и коллектором двигателя. Доступ к этому узлу ничем не затруднен, поэтому при проведении обслуживающих работ или замене добраться до него и демонтировать с авто несложно.

Симптомы загрязнения ДЗ

Как правило, симптомами загрязнения заслонки выступают следующие моменты:

  • обороты силовой установки проваливаются и зависают, возможна полная остановка двигателя;
  • на ходу мотор функционирует нестабильно, неровно;
  • в режиме ХХ плавают обороты;
  • запуск мотора без всяких причин усложняется.

Одним из главных признаков загрязненной заслонки является плохая тяга машины на низких оборотах. Кроме того, в процессе передвижения автомобиль дергается, особенно при ускорении. Почему же это происходит?

Что такое дроссельная заслонка в машине

Сделай репост и информация будет всегда под рукой ✅

Дроссельная заслонка — это конструктивный элемент впускной системы двигателя внутреннего сгорания (ДВС) с впрыском топлива. Работники станции техобслуживания также называют её — задвижка. Её принцип работы заключается в регуляции количества поступающего в двигатель воздуха, образующего специальную смесь газа и топлива.

Этот узел располагается между впускным коллектором и воздушным фильтром. По своему устройству она напоминает обыкновенный клапан. При открытом положении дроссельной заслонки показатели давления внутри системы достигают атмосферных, при закрытом возникает вакуум. Благодаря этой особенности дроссель дополнительно применяется при работе вакуумного усилителя тормозной системы автомобиля с целью продувки адсорбера (улавливатель испарений бензина).

После изобретения дроссельной заслонки её принцип работы остался прежним, несмотря на датчики и управление через бортовой компьютер. Но, несмотря на то, что это очень простое устройство, нарушения в её работе сразу же отражаются на работе мотора.

В статье подробно расскажу, что такое дроссельная заслонка, где она находится, для чего нужна, устройство и принцип работы, какие бывают неисправности и зачем чистить этот узел.

Что такое дроссельная заслонка

Дроссельная заслонка (сокращённо ДЗ или дроссель) – отдельный элемент мотора автомобиля, регулирующий количество воздушного потока, попадающего в камеру сгорания мотора. Чем больше угол открытия, тем больше воздуха поступает. При детальном рассмотрении становится понятно, что это воздушный клапан, имеющий немного изменённое устройство.

В переводе с немецкого языка дроссель переводится как душитель (Drossel, Drosselklappe). Это так и есть – устройство ограничивает количество воздуха, попадающего в цилиндры двигателя. Одним из видов дросселей является жиклёр.

Расскажу, для чего мотору нужен воздух. Двигатель внутреннего сгорания работает благодаря сгоранию топлива. А чтобы оно могло гореть, требуется газ, то есть кислород, который входит в состав окружающего воздуха. При смешивании кислорода с бензином получается топливно-воздушная смесь, которая без проблем может воспламениться в цилиндрах ДВС. В бензиновом моторе смесь загорается при помощи искры свечи зажигания. А в дизелях — благодаря возникающему давлению при сжатии этой смеси при движении поршней в моторе.

Дроссель устанавливают на бензиновых, дизельных и инжекторных моторах. Она всегда размещается между воздушным фильтром и коллектором. В качестве отдельного узла дроссель применяется на дизельном и инжектором двигателе.

В карбюраторе дроссель или актуатор представлен в качестве составляющей мотора, находящегося внизу смесительной камеры. Именно он регулирует количество топливно-воздушной смеси, которая образуется в смесительной камере и затем попадает в цилиндры двигателя.

В зависимости от типа мотора, заслонка выполняет разные функции. У бензинового двигателя это – основной инструмент, обеспечивающий контроль оборотов мотора. Именно положением этого модуля управляет водитель при помощи педалей газа и тормоза.

В зависимости от зазора при открытии нормируется поток воздуха, попадающего в цилиндры за конкретную единицу времени. Причём состав топливно-воздушной смеси остаётся постоянным. Он имеет соотношение воздуха к горючему в пропорции 14,7 к 1, что является так называемой стехиометрической смесью.

Если убрать дроссельную заслонку из бензинового мотора, то не получится управлять оборотами силового агрегата. Это не касается бензиновых моторов с системой управлением подъёма клапанов, где задвижка установлена на случай аварийной ситуации, чтобы можно было заглушить силовой агрегат. В этой статье описана дроссельная заслонка стандартного бензинового мотора.

Процесс работы у мотора дизельного типа обеспечивается по другой схеме. В отличие от бензинового, он может работать без задвижки. Воздушный поток поступает в дизельный двигатель свободно, а его обороты и мощность зависит только от количества топлива попадающего в цилиндры. Нажимая на педаль, автомобилист не меняет положение заслонки, так он контролирует только объем расходуемого дизельного топлива.

Но для чего нужна задвижка на дизельном двигателе? Её функции совершенно иные. При первом рассмотрении выделяют две её задачи. Блок управления способен полностью закрывать дроссель, чтобы остановить мотор в штатном порядке или при возникновении чрезвычайной ситуации. После блокировки доступа к заслонке в промежутке между ней и цилиндром появляется разрежение, способствующее восстановлению рециркуляции газов.

Устройство дросселя

С практической стороны дроссельная заслонка является перепускным клапаном. В открытом положении давление в системе впуска равно атмосферному. По мере закрытия оно уменьшается, приближаясь к значению вакуума (это происходит, поскольку двигатель фактически работает как насос). Именно по этой причине вакуумный усилитель тормозов соединен с впускным коллектором. Конструктивно сама заслонка является пластиной круглой формы, способной поворачиваться на 90 градусов. Один такой оборот представляет собой цикл от полного открытия и до закрытия клапана.


Устройство дроссельной заслонки

Блок (модуль) дроссельной заслонки включает в себя следующие элементы:

  • Корпус, оснащенный несколькими патрубками. Они соединены с системами вентиляции, улавливания топливных паров и охлаждающей жидкости (для обогрева заслонки).
  • Привод, приводящий в движение клапан от нажатия на педаль газа водителем.
  • Датчики положения, или потенциометры. Они производят замер угла открытия дроссельной заслонки и подают сигнал в блок управления двигателем. В современных системах устанавливается два датчика контроля положения дросселя, которые могут быть со скользящим контактом (потенциометры) или магниторезистивные (бесконтактные).
  • Регулятор холостого хода. Он необходим для поддержания заданной частоты вращения коленвала в закрытом режиме. То есть обеспечивается минимальный угол открытия заслонки, когда педаль газа не нажата.

Устройство дроссельной заслонки

Дроссельная заслонка представляет собой важную часть впускной системы ДВС. Конструкция включает основные элементы:

  1. Корпус дроссельной заслонки. Выполнен из металла. Главное предназначение – объединение всех используемых элементов в единый механизм. В корпусе находятся патрубки, которые соединены с такими системами, как улавливание бензиновых паров, вентиляция и охлаждения мотора (это нужно для обогрева дросселя).
  2. Сама заслонка. Представлена в форме простейшего клапана или круглой задвижки, вращающейся в плоскости. Она расположена в центральной части.
  3. Ось. Исполнена в форме вентиля, напоминающего удлинённый цилиндр, обеспечивающий вращение задвижки.
  4. Патрубки охлаждающей жидкости, вентиляции картера, улавливания паров бензина.
  5. Датчик положения дроссельной заслонки. Прибор, собирающий и передающий информацию. Имеет прямую связь с основным блоком. Сейчас в автомобилях устанавливают два датчика положения заслонки.
  6. Регулятор холостого хода (РХХ). Трубка, проходящая в обход заслонки, обеспечивающая определённую частоту вращения на холостом ходу. За что отвечает эта трубка? Регулятор слегка приоткрывает заслонку даже без нажатия педали акселератора.
Читать еще:  Почему выбрасывает тосол в расширительный бачок

Внимание! В перечне представлены только элементы, участвующие в выполнении функций. Дополнительные детали: болты, крышки, моторчик, шестерня.

Конструкция дроссельной заслонки

На практике дроссельная заслонка является перепускным клапаном. В открытом положении давление во впускной системе равно атмосферному. Когда она закрывается, давление уменьшается ближе к значению разрежения (это потому, что двигатель фактически работает как насос). Вот почему вакуумный усилитель подключен к впускному коллектору. Конструктивно сама заслонка представляет собой круглую пластину, которую можно поворачивать на 90 градусов. Одно из этих оборотов — это цикл от полного открытия до закрытия клапана.

Модуль дроссельной заслонки состоит из следующих элементов:

  • Корпус с несколькими патрубками. Они подключаются к системам вентиляции, рекуперации топлива и хладагента.
  • Привод, который приводит клапан в движение, при нажатии педали акселератора водителем.
  • Датчики положения или потенциометры. Они измеряют угол поворота дроссельной заслонки и посылают сигнал в блок управления двигателем. В современных системах установлены два датчика положения, которые могут быть скользящими контактами (потенциометры) или магниторезистивными (бесконтактными).
  • Регулятор холостого хода. Основное назначение — поддерживать определенную частоту вращения коленчатого вала в закрытом режиме. То есть минимальный угол открытия заслонки обеспечивается, когда педаль акселератора не нажата.

Где находится дроссельная заслонка

В современных автомобилях дроссельная заслонка находится между воздушным фильтром и впускным коллектором. Доступ к месту не затруднён, потому сложностей для проведения обслуживания и выполнения ремонтных работ нет.

Добраться до него без особого труда может сам автовладелец, но делать это стоит только, если дроссель механический. Если установлена электронная заслонка, работу лучше доверить опытному автомастеру.


Как снять дроссельную заслонку

Дроссельные клапаны с механическим приводом

Старые автомобили обычно оснащены дроссельными клапанами с механическим приводом. Характерной особенностью этого режима работы является то, что педаль акселератора подключается непосредственно к клапану через специальный кабель.

Режим работы дроссельной заслонки с механическим приводом следующий:

Дроссельная заслонка двигателя — устройство, виды, неисправности

Дроссельная заслонка — это конструктивный элемент топливной системы автомобиля с бензиновым двигателем внутреннего сгорания, регулирующий поступление воздушных масс и образование воздушно-топливной смеси. Этот элемент впускной системы находится между коллектором и воздушным фильтром. Дроссель — одна из основных составляющих системы питания автомобиля.


Дроссельная заслонка

Дроссельная заслонка — своего рода воздушный клапан, позволяющий контролировать давление в системе. Если клапан открыт — уровень давления стремится к атмосферному, а при закрытом, — снижается, приближаясь к вакууму. Таким образом, дроссельная заслонка регулирует еще и работу вакуумного усилителя тормозной системы. А это значит, что чем меньше угол открытия клапана, тем ниже обороты.

Устройство дроссельной заслонки

Дроссельная заслонка — круглая пластина, имеющая способность вращаться на 90 градусов вокруг себя — это цикл от открытия и до закрытия. Находится она в корпусе, содержащим:

  • Привод — механический или электрический;
  • Датчик положения — потенциометр дроссельной заслонки;
  • Регулятор холостого хода.

В совокупности все эти составляющие образуют дроссельный узел или блок дроссельной заслонки.

Корпус заслонки устроен довольно непросто. Ведь сам он входит в состав системы охлаждения. Именно дроссельный узел открывает каналы, по которым циркулирует охлаждающая жидкость. Оснащение корпуса специальными патрубками, связанными с вентиляционной системой и системой улавливания паров топлива, делает конструкцию еще более сложной. Следует подробнее изучить эту систему.

Датчик положения дроссельной заслонки

Этот датчик является потенцимером. При воздействии на педаль газа изменяется положение заслонки и напряжение подаваемое на контролер. В закрытом состоянии напряжение составляет 0,7В, при полностью открытой 4В. В соответствии с этими данными датчик и контролирует подачу топлива.

Если возникает неисправность датчика положения, то контролер не сможет правильно определять положение заслонки. Это вытекает в следующие неисправности:

  • во всех режимах работы двигателя обороты начинают плавать, на холостом ходу обороты будут повышенными;
  • при выключении передачи (нейтраль) во время движения, двигатель может глохнуть;
  • иногда может загораться лампочка CHECK.

Для проверки работоспособности датчика положения, можно воспользоваться мультиметром. При включенном зажигании щупы подключаются к разъемам В и С. Изменение положения заслонки должно приводить к изменению напряжения.

Регулятор холостого хода


Дроссельная заслонка на автомобиле
При помощи регулятора холостого хода, поддерживается необходимая частота вращения коленчатого вала, при абсолютно закрытой заслонке. К примеру, если мотор нагревается или увеличивается нагрузка, к процессу подключается дополнительное оборудование.

Устроен регулятор следующим образом: корпус, куда крепится шаговый электрический мотор, соединенный с конусной иглой. Во время работы мотора на холостых оборотах, игла как поршень, регулирует площадь сечения воздушного канала.

Работа дроссельной заслонки

Тип дроссельной заслонки определяет ее конструкцию, работу и режим управления. Он может быть механическим или электрическим (электронным).

Механическое исполнительное устройство

Старые и дешевые модели автомобилей имеют механический исполнительный клапан, где педаль акселератора соединяется непосредственно с перепускным клапаном с помощью специального троса. Механическая передача для дроссельной заслонки состоит из следующих элементов:

  • педаль акселератора;
  • поворотные рычаги и тяги;
  • стальной трос.

Нажатие на педаль акселератора запускает механическую систему рычагов, тяг и троса, которая заставляет заслонку вращаться (открываться). В результате в систему начинает поступать воздух и образуется топливовоздушная смесь. Чем больше подано воздуха, тем больше будет поступать топлива и, как следствие, скорость возрастет. Когда дроссельная заслонка находится в положении холостого хода, дроссельная заслонка возвращается в закрытое положение. Помимо базового режима, в механических системах также может быть предусмотрено ручное управление положением дроссельной заслонки с помощью специального рычага.

Как работает электронный привод

Второй и самый современный тип заслонки — это электронный дроссель (с электроприводом и электронным управлением). Основные отличия:

  • Отсутствие прямого механического взаимодействия между педалью и заслонкой. Вместо этого используется электронное управление, которое также позволяет изменять крутящий момент двигателя, не нажимая на педаль.
  • Скорость холостого хода двигателя регулируется автоматически при перемещении дроссельной заслонки.

В состав электронной системы входят:

  • датчики положения педали акселератора и заслонки;
  • электронный блок управления двигателем (ECU);
  • электропривод.

Электронная система управления дроссельной заслонкой также учитывает сигналы коробки передач, контроль температуры, датчик положения педали тормоза и круиз-контроль.

Когда педаль акселератора нажата, датчик положения педали акселератора, состоящий из двух независимых потенциометров, изменяет сопротивление в цепи, что является сигналом для электронного блока управления. Последний передает команду на электропривод (двигатель) и поворачивает дроссельную заслонку. Её положение, в свою очередь, отслеживают специальные датчики. Они отправляют в ЭБУ обратную связь о новом положении клапана.

Датчик текущего положения акселератора представляет собой потенциометр с разнонаправленными сигналами и общим сопротивлением 8 кОм. Он расположен в корпусе и реагирует на вращение вала, преобразуя угол открытия клапана в постоянное напряжение.

Когда клапан закрыт, напряжение будет примерно 0,7 В, а при полностью открытом — примерно 4 В. Этот сигнал получает контроллер, таким образом узнавая процент открытия дроссельной заслонки. На основании этого рассчитывается количество доставленного топлива.

Формы выходных сигналов датчиков положения заслонки разнонаправлены. Разница между двумя значениями считается управляющим сигналом. Такой подход помогает бороться с возможными помехами.

Потенциометр

Иными словами, потенциометр изменяет угол открытия заслонки и тем самым воздействует на контроллер. При закрытой заслонке напряжение не превышает 0,7 В, а при полном открытии достигает 4В. Так и происходит контроль подачи топлива.

Если дроссельная заслонка перестала реагировать на импульсы, исходящие от датчика положения, могут возникнуть такие поломки как:

  • Плавающие обороты при работе двигателя. Повышенные обороты холостого хода;
  • Глохнет двигатель, при переключении на нейтральную передачу;
  • Неконтролируемый расход топлива;
  • Двигатель работает вполсилы;
  • Горит лампочка CHEK- проверьте, правильно ли работает дроссельная заслонка.

Наиболее часто встречающиеся неисправности

Основную неисправность дроссельной заслонки

вызывает сам атмосферный воздух проходящий через неё при работе ДЗ. Во время движения мельчайшие частицы пыли могут проникать даже через превосходный воздушный фильтр. Также загрязнение может вызывать и масляная пыль, проникающая через систему вентиляции картера. Пыль и масло смешиваются и образуют на ДЗ достаточно твёрдый налет. Со временем этот налёт покрывает края пластины, и ДЗ перестает закрываться до конца. По причине
загрязнения дроссельной заслонки
автомобили наиболее часто попадают в ремонт.

Типичные признаки загрязнения ДЗ:

    Частая причина неправильной работы узла дроссельной заслонки — загрязнение заслонки
  • трудности запуска двигателя;
  • нестабильный холостой ход;
  • рывки при движении, когда скорость меньше 20 км/ч.
  • Как устранить проблему

    Если вы заподозрили, что дроссельная заслонка неисправна — нужно проверить весь узел, куда она крепится. Для этого точно соблюдайте следующий алгоритм:

    1. Отсоединить аккумуляторную минусовую клемму.
    2. Необходимо слить жидкость из системы охлаждения.
    3. Откинуть шланги от дроссельного узла.
    4. Убрать трос привода заслонки.
    5. Освободить потенциометр от колодок и регулятора холостого хода.
    6. Снять дроссельный узел.
    7. Проверить в каком состоянии прокладка дроссельной заслонки и остальные элементы узла.
    8. При необходимости заменить некоторые составляющие или же весь узел.
    9. Собрать конструкцию в обратном порядке.

    После того, как вы установили узел на место, необходимо проверить герметичность системы охлаждения, куда вы снова залили жидкость. Не должно быть капель и потеков.

    Зачем чистить дроссельную заслонку

    Чистить дроссельную заслонку необходимо для того, чтобы двигатель автомобиля мог принимать чистый воздух без каких-либо препятствий которые образуются в виде отложений на стенках. Образованию этих отложений способствует:

    • Грязный воздух. Конечно, же во всех автомобиля есть воздушный фильтр. Весь свой срок эксплуатации он фильтрует всасываемый воздух двигателем. Но к сожалению, он фильтрует только крупные частицы пыли в виде абразива, самым же мелки удается пройти сквозь него, какая-то часть сгорает в двигателе, а какая-то оседает на дроссельной заслонке и ее узлах.
    • Картерные газы. На современных автомобиля, картерные газы, отчищаются от масла в специальном узле – маслоотделителе. В дальнейшем они попадают обратно в двигатель через впуск, а именно дроссельную заслонку.
    • Отработавшие газы. С каждым годом нормы экологичности становятся все более жесткими. И производители вынуждены внедрять все новые и новые системы по ее обеспечению в двигатели авто. Одной из таких систем является клапан ЕГР, суть которого заключается в возвращении небольшого количества выпускных газов обратно в двигатель, через дроссельную заслонку.

    Статья в тему: Правила обкатки двигателя после ремонта и на новом автомобиле

    А теперь делаем вывод, что частички масла которые находятся в картерных газах, смешиваются с продуктами горения из отработавших газов, с пылью и мелким абразивом из воздуха внешней среды, и все это оседает в дроссельной заслонке. Спустя тысячи километров, внутри нее образуется солидный слой всей это субстанции, который нарушает правильную работу дроссельной заслонки.

    Регулировка заслонки

    Для того чтобы дроссельная заслонка работала как часы, ее датчик периодически нужно подстраивать. Для этого выполняется несколько простых действий:

    1. Отключается зажигание, дабы перевести клапан в положение закрыто.
    2. Обесточивается разъем датчика.
    3. Регулируется датчик, при помощи щупа размером 0,4 мм, расположенным между винтом и рычагом.

    Для проверки исправности датчика измеряется уровень напряжения с помощью омметра. Если напряжение обнаружено — датчик следует заменить. При обратной ситуации можно продолжать регулировать датчик.

    Для этого заслонка вращается до того момента, пока вы не увидите те самые показатели, которые прописаны в паспорте авто. Не забудьте проверить после регулировки плотность закрученных болтов и гаек, во время процесса они могли раскрутиться.

    Как известно, топливная система автомобиля — это его жизнеспособность. Если она хоть немного нарушена, машина может вас неприятно удивить в самый неподходящий момент. Если из строя выйдет дроссельная заслонка или другой элемент узла, то последствия могут быт плачевными. Поэтому куда лучше, не скупиться на автомобильную диагностику, при возникновении малейших подозрений на неисправность. Помните — безопасность на дороге превыше всего.

    Чем чистить дроссельную заслонку

    Различные производители автомобильной химии предлагают ряд средств для чистки дросселя и его составляющих. Можно конечно же использовать средства которые есть под рукой, например спирт или ацетон. Но они в ряде случаев будут не эффективны, а могут даже нанести вред устройству, поэтому специалисты советуют использовать специализированные очистители.

    Статья в тему: Перегорает предохранитель в автомобиле: причины, диагностика, выбор предохранителя

    Мы предоставили таблицу, в которой, на наш взгляд, собраны самые популярные средства среди СТО и автомехаников.

    Название средстваОтзыв среди автомеханиковЦенаЕмкость
    LIQUI MOLY DrosselKlappen-Reiniger (LM-5111)Является отличным средство для мягкой очистки, от загрязнений, работает быстро, свою цену оправдывает.505 р.400 мл
    Mannol Carburetor CleanorХороший очиститель, требуется время для качественной очистки, хорошо зарекомендовал себя среди автомехаников.105 р.400 мл
    ABRO Carb&Choke Cleaner (CC-220)Рекомендованный на многих СТО нашей страны, отличный представитель по соотношению цена-качество.198 р.220 мл

    * Цены представлены по Московской области на 2021 год, в регионах цена может быть другой.

    Устройство дросселя

    Дроссель состоит из следующих элементов:

    • корпус – металлическая конструкция, которая объединяет все элементы механизма;
    • непосредственно заслонка – круглая задвижка, которая вращается в одной плоскости на специальной оси;
    • ось – своеобразный вентиль, металлический удлиненный цилиндр, на котором вращается задвижка;
    • датчик задвижки – прибор, который передает информацию о положении задвижки на блок управления;
    • регулятор холостого хода – дополнительная трубка, проложенная в обход задвижки, обеспечивающий цилиндрогруппу воздухом во время холостого хода.

    Электронный привод дроссельной заслонки

    При электронном приводе акселератора перемещение дроссельной заслонки осуществляется при помощи электродвигателя, без традиционной механической связи между педалью акселератора и дроссельной заслонкой. Положение педали отслеживается датчиками, и соответствующие сигналы передаются в блок управления, где обрабатывается и передается на исполнительный механизм перемещения дроссельной заслонки. Благодаря такой системе блок управления может посредством перемещения дроссельной заслонки влиять на величину крутящего момента двигателя даже в том случае, когда водитель не меняет положения педали акселератора. Это позволяет достигать лучшей координации между системами двигателя.

    Электронный привод дроссельной заслонки состоит из:

    • педального модуля
    • модуля дроссельной заслонки
    • корпуса дроссельной заслонки
    • блока управления двигателем
    • контрольной лампы электронного привода дроссельной заслонки

    Педальный модуль посредством датчиков непрерывно определяет положение педали акселератора и передает соответствующий сигнал блоку управления двигателя. Он состоит из:

    • педали акселератора
    • датчика 1 положения педали акселератора
    • датчика 2 положения педали акселератора

    Два одинаковых датчика используются для обеспечения надежной работы системы, но для работы системы достаточно работоспособности одного датчика.

    Рис. Педальный модуль:
    1 – педаль; 2 — корпус модуля педали акселератора; 3 – контактная дорожка;; 4 – датчики; 5 — рычаг

    Оба датчика представляют собой потенциометры со скользящим контактом, укрепленным на общем валу. При каждом изменении положения педали изменяется сопротивление датчиков и, соответственно, напряжение, которое передается на блок управления двигателя. Используя сигнал от обоих датчиков положения педали акселератора блок управления двигателя узнает положение педали в каждый момент времени.

    Разновидностью педального модуля является бесконтактный модуль с индукционными катушками. На общей многослойной плате предусмотрены одна катушка возбуждения и три приемные катушки для каждого чувствительного элемента, а также электронные элементы обработки сигналов и управления датчиком.

    Ромбовидные приемные катушки расположены со смещением относительно друг друга, благодаря чему создается сдвиг фаз индуцируемого в них тока. Над приемными катушками находятся катушки возбуждения. На механизме педали закреплена металлическая шторка, который перемещается при движении педали вдоль платы на минимальном расстоянии от нее.

    Читать еще:  Как поднять обороты двигателя

    Катушка возбуждения запитывается переменным током. В результате возникает переменное электромагнитное поле, действующее на металлическую шторку. При этом в шторке индуцируется ток, который в свою очередь создает вокруг нее свое, вторичное, переменное электромагнитное поле. Оба поля, созданные катушкой возбуждения и металлической шторкой, действуют на приемные катушки, создавая на их выводах соответствующее напряжение. В то время как собственное поле шторки не зависит от ее положения, индуцируемый в приемных катушках ток, изменяется при перемещении шторки относительно них.

    Рис. Изменение напряжения при перемещении заслонки:
    1 – шторка; 2 – приемные катушки

    При перемещении шторки изменяется степень перекрытия ею той или иной приемной катушки и соответственно меняется амплитуда напряжения на ее выводах. Переменные напряжения на выводах катушек преобразуются затем в электронной схеме датчика в сигналы постоянного напряжения, усиливаются и сравниваются друг с другом. Обработка завершается созданием линейного напряжения, подаваемого на выводы датчика.

    Преимуществом модуля является отсутствие контактов, что повышает надежность системы.

    Модуль управления дроссельной заслонки расположен на впускном трубопроводе и служит для обеспечения подачи нужного количества воздуха в цилиндры.

    Модуль управления дроссельной заслонки обеспечивает необходимую массу воздуха, поступающего в цилиндры.

    Модуль состоит из:

    • корпуса дроссельной заслонки 1
    • дроссельной заслонки 7
    • привода дроссельной заслонки

    Рис. Модуль управления дроссельной заслонки:
    1– корпус дроссельной заслонки; 2 – электропривод дроссельной заслонки; 3 – шестерня привода; 4 – промежуточная шестерня; 5 – шестерня пружинного возвратного механизма; 6 – угловые датчики привода дроссельной заслонки; 7 – дроссельная заслонка

    Привод дроссельной заслонки воздействует на дроссельную заслонку в соответствии с командами блока управления двигателя 2.

    Рис. Схема управления дроссельной заслонкой:
    1 – электропривод; 2 – блок управления двигателем; 3 – угловые датчики управления дроссельной заслонкой; 4 – дорожки потенциометров; 5 – дроссельная заслонка

    Положение дроссельной заслонки отслеживается с помощью двух датчиков, представляющих собой потенциометры со скользящим контактом. Скользящие контакты укреплены на шестерне, которая сидит на валике дроссельной заслонки. Контакты касаются дорожек потенциометров в крышке корпуса. При изменении положения дроссельной заслонки изменяются сопротивления дорожки потенциометров и, тем самым, сигнальные напряжения, которые передаются блоку управления двигателя.

    Блок управления двигателя определяет по этим сигналам намерение водителя увеличить или уменьшить мощность двигателя, суммируя внешние и внутренние требования к крутящему моменту и по ним рассчитывает необходимую величину момента и соответственно этому изменяет его. Крутящий момент определяется расчетом по частоте вращения двигателя, сигналу о нагрузке двигателя и моменту зажигания, при этом блок управления двигателя сначала сравнивает фактический крутящий момент с оптимальным моментом. Если эти величины не совпадают, блок управления расчетом определяет направление и величину положения дроссельной заслонки в целях достижения совпадения фактического и оптимального крутящего момента. После подается управляющий сигнал приводу дроссельной заслонки для приоткрытия ее или, наоборот, некоторого закрытия, например в случае включения дополнительного потребителя ­- компрессора климатической установки.

    Контрольная лампа электронного привода акселератора сигнализирует водителю, что в системе электронного привода имеется неисправность.

    Дроссельная заслонка: типы устройств и особенности их обслуживания

    1. Типы дроссельных заслонок
    2. Проблемы при работе дроссельной заслонки и пути их решения
    3. Отечественное твердосмазочное покрытие для дроссельной заслонки

    Дроссельная заслонка регулирует подачу топливно-воздушной смеси в двигатель внутреннего сгорания, изменяя проходное сечение канала. По сути она является воздушным клапаном: при открытой заслонке давление во впускной системе равняется атмосферному, при закрытой – уменьшается вплоть до разрежения.

    Заслонка установлена между воздушным фильтром и впускным коллектором. Помимо основной задачи – дозирования воздуха для нормального функционирования силового агрегата в любом режиме эксплуатации – заслонка отвечает также за поддержание требуемых оборотов коленвала на холостом ходу (с разной нагрузкой на двигатель) и за нормальное функционирование усилителя тормозной системы.

    Основными конструктивными элементами дроссельной заслонки являются:

    • Корпус
    • Заслонка с осью
    • Механизм привода

    Типы дроссельных заслонок

    По типу привода и наличию дополнительных элементов (датчиков, каналов и пр.) дроссельные заслонки подразделяются на механические, электромеханические и электронные.

    Основная особенность механической заслонки заключается в том, что ею водитель управляет самостоятельно при помощи тросового привода, соединяющего педаль акселератора с сектором газа.

    В конструкцию этого узла дополнительно входят датчик положения (угла открытия заслонки), регулятор холостого хода (ХХ), байпасные каналы, система подогрева.

    Основным недостатком механического дроссельного узла является возможная погрешность при приготовлении топливовоздушной смеси.

    Это сказывается на экономичности и мощности двигателя. ЭБУ не управляет механической заслонкой, а лишь собирает информацию об угле открытия. При его резких изменениях блок не всегда успевает «подстроиться» под новые условия, что приводит к перерасходу топлива.

    Дроссельная заслонка электромеханического типа также управляется с помощью троса, однако, вместо дополнительных каналов, оснащена электромотором с редуктором, который соединен с осью заслонки.

    Блок управления в таком типе узла может регулировать работу двигателя на холостых оборотах. В остальных режимах функционирования ДВС дросселем управляет водитель.

    Механизм частичного управления открытием заслонки позволил упростить конструкцию самого дросселя, однако не устранил погрешность в смесеобразовании.

    Такой проблемы не имеет только электронная дроссельная заслонка, которая устанавливается на современные модели автомобилей. Ее основная особенность – отсутствие прямого взаимодействия педали акселератора с осью. Блок управления электронной заслонки регулирует ее открытие на всех режимах эксплуатации двигателя. В конструкцию дополнительно введен датчик положения педали акселератора.

    В процессе работы ЭБУ использует информацию не только с различных датчиков, но и со следящих устройств автоматических трансмиссий, тормозной системы, климатического оборудования, круиз-контроля.

    Блок обрабатывает все поступающие сигналы и устанавливает оптимальный угол открытия заслонки.

    Такие образом, электронная система позволяет полностью контролировать работу системы впуска, устраняя погрешности в смесеобразовании на любом режиме эксплуатации силовой установки.

    Несмотря на, казалось бы, идеально продуманную схему работы, электронные дроссельные заслонки не лишены недостатков. Так как их открытие происходит при помощи электродвигателя, любые, даже незначительные его неисправности, приводят к нарушению работы узла. Естественно, это сказывается на функционировании двигателя. В тросовых механизмах управления такой проблемы нет.

    Еще один недостаток касается, по большей части, бюджетных автомобилей. Из-за не конца проработанного программного обеспечения и более дешевых электронных комплектующих дроссель может работать с запозданием: после нажатия на педаль акселератора блок управления еще некоторое время собирает и обрабатывает информацию, после чего подает сигнал на электродвигатель дросселя.

    Проблемы при работе дроссельной заслонки и пути их решения

    Дроссельная заслонка в процессе работы загрязняется продуктами сгорания топлива – как со стороны впускного коллектора, так и со стороны воздуховода (в случае наличия системы рециркуляции отработавших газов).

    Кроме того, большинство дроссельных заслонок имеют осевой люфт, который со временем приводит к возникновению выработки – канавки глубиной до 1 мм в корпусе дросселя. В результате топливная смесь обедняется, обороты двигателя на холостом ходу теряют стабильность и плохо поддаются регулированию. В итоге нарушается плавность движения автомобиля, ухудшается динамика его разгона.

    Для минимизации негативных последствий, а также повышения долговечности и надежности двигателя ведущие автопроизводители наносят на дроссельные заслонки антифрикционные твердосмазочные покрытия (АТСП).

    Использование АТСП позволяет:

    • Обеспечить плавное движение дроссельной заслонки
    • Повысить чувствительность устройства
    • Предотвратить заедание механизма
    • Минимизировать износ трущихся поверхностей

    АТСП, нанесенные на заслонку, по внешнему виду напоминают лакокрасочные покрытия. При неквалифицированном техническом обслуживании их могут повредить случайно или намеренно, при этом четкость работы всего механизма и его ресурс значительно снижаются.

    Отечественное твердосмазочное покрытие для дроссельной заслонки

    Поврежденное твердосмазочное покрытие нуждается в обязательном восстановлении. Сегодня это может сделать любой автолюбитель, так как эффективные и удобные в применении антифрикционные материалы выпускаются в нашей стране.

    Одно из наиболее популярных и перспективных АТСП – MODENGY Для деталей ДВС. Данное покрытие на основе дисульфида молибдена и графита выпускается в аэрозольных баллонах, поэтому может наноситься на внутренние поверхности дроссельной заслонки непосредственно, без привлечения специализированного оборудования.

    MODENGY Для деталей ДВС защищает заслонку от повышенного трения, износа и коррозии, долгое время сохраняет устойчивость к воздействию агрессивных сред, в том числе моторного масла.

    Покрытие наносится на предварительно очищенную дроссельную заслонку в несколько слоев. Время промежуточной сушки каждого слоя составляет 10 минут. Состав отверждается за 12 часов при комнатной температуре, после чего узел допускается к сборке.

    Для чистки дроссельной заслонки производитель покрытия рекомендует использовать Специальный очиститель-активатор MODENGY. Он не только удаляет загрязнения, но и обеспечивает максимальное сцепление АТСП с обрабатываемой поверхностью.

    Покрытие для деталей двигателя и очиститель MODENGY выпускаются в наборе, что значительно экономит время и деньги на проведение необходимых операций.

    Электронная дроссельная заслонка

    Механическая связь заслонки с педалью газа уходит в историю. Вместо неё широко используется электронная дроссельная заслонка. Именно ей и посвящён новый переведенный на русский язык модуль в LCMS ELECTUDE в разделе «Автомобильные основы».

    Узел электронно-управляемой дроссельной заслонки содержит привод со встроенным элементом управления. Это означает, что блок управления двигателем подает на модуль электронного управления дроссельной заслонкой сигнал для открытия дроссельной заслонки и обеспечивает достижение фактического значения количества воздуха, поступающего в двигатель для образования топливно-воздушной смеси.

    Узел электронно-управляемой дроссельной заслонки состоит из следующих элементов:

    • 1 привод: регулировка положения дроссельной заслонки
    • 2 датчики: датчики положения дроссельной заслонки
    • модуль электронного управления

    Блок управления двигателем подает сигнал на модуль управления дроссельной заслонки. Сигнал от блока управления двигателем определяет угол открытия дроссельной заслонки.

    Преимущество модуля электронно-управляемой дроссельной заслонки состоит в том, что модуль управления может определять оптимальное положение дроссельной заслонки согласно заданным параметрам. Также осуществляется управление холостым ходом и осуществляется круиз-контроль.

    Узел дроссельной заслонки установлен во впускном тракте между датчиком массового расхода воздуха и впускным коллектором, подающим воздух к впускным клапанам.

    Расположение

    Узел электронно-управляемой дроссельной заслонки расположен между воздушным фильтром и впускным коллектором. При наличии массового расходомера воздуха, воздух сначала проходит через него, а затем через корпус дроссельной заслонки.

    Параметры: модуль электронного управления активирует привод дроссельной заслонки. В зависимости от условий эксплуатации и сигналов датчиков блок управления двигателем определяет оптимальное положение дроссельной заслонки согласно заданным параметрам.

    Таким образом, можно также легко обеспечить управление круиз-контролем блоком управления двигателем.

    Компоненты

    Система электронного управления дроссельной заслонкой включает в себя:

    • непосредственно дроссельную заслонку,
    • ось дроссельной заслонки,
    • катушку,
    • постоянный магнит.

    Катушка активируется блоком управления дроссельной заслонки. С другой стороны корпуса заслонки есть пружина, которая нужна для возвращения заслонки в исходное положение. Когда катушка обесточена, заслонка открыта на 20°.

    Если в электрической цепи есть дефект и модуль управления дроссельной заслонкой нельзя активировать, двигатель может работать с дроссельной заслонкой в указанном положении.

    Из начального положения дроссельную заслонку можно либо открыть больше, либо закрыть.

    Блок управления двигателем отправляет данные о требуемом угле дроссельной заслонки в модуль управления дроссельной заслонки, который преобразует его в электрический сигнал, посылаемый на привод заслонки. Для передачи данных используется ШИМ-сигнал. Сигнал блока управления двигателем принимается на клемме C узла электронного управления дроссельной заслонки.

    Сигнал ШИМ варьируется от 10% до 90% при частоте 100-300 Гц. Если сигнал находится за пределами указанных значений, дроссельная заслонка возвращается в исходное положение (угол 20º). Реверсивный ток Чтобы перевести дроссельную заслонку из исходного положения в открытое или закрытое положение, ток в катушке должен изменить свое направление (реверсирован). Для этого катушку нужно переключить обратной полярностью тока.

    Изменение направления тока осуществляется путем активации выходных каскадов. Эта мостовая схема находится в блоке управления корпуса дроссельной заслонки и им же активируется.

    Угол открытия дроссельной заслонки зависит от силы тока, проходящего через катушку.

    Регулирование тока

    Чтобы установить дроссельную заслонку в любое требуемое положение, необходимо управлять силой тока.

    Блок управления может регулировать ток, проходящий через катушку, изменяя проводимость выходного каскада. Недостаток этого метода заключается в том, что выходной каскад нагревается.

    Выходной каскад нельзя открыть наполовину, поэтому сила тока регулируется с коэффициентом заполнения рабочего цикла. л

    Среднее значение тока достигается быстрым включением и выключением тока, что позволяет избежать перегрева выходного каскада.

    Уровень тока теперь зависит от коэффициента заполнения (рабочего цикла).

    Если время включения тока равняется времени выключения, то средний ток составляет 50%. В таком случае говорят, что рабочий цикл равен 50%. При рабочем цикле 100% ток включен непрерывно.

    Катушка заземлена. Когда падение напряжения на выходном каскаде 4 равно 0 вольт, через катушку проходит ток.

    Датчики положения дроссельной заслонки Положение дроссельной заслонки измеряется датчиками положения дроссельной заслонки. Они расположены по боковым сторонам корпуса дроссельной заслонки.

    Согласно условиям безопасности должно быть установлено два датчика положения дроссельной заслонки, каждый со своим собственным сигналом.

    Модуль управления электронно-управляемой дроссельной заслонки непрерывно сравнивает оба сигнала, чтобы точно определять фактическое положение заслонки.

    Если сигналы от двух датчиков сообщают разную информацию, модуль управления узлом дроссельной заслонки останавливает управление заслонкой и передает код ошибки в блок управления двигателем.

    Управление увеличением подачи воздуха прекращается, но, благодаря исходному положению заслонки под углом 20°, двигатель работает с увеличенной скоростью холостого хода, и водитель получает возможность осторожно доехать до мастерской.

    Датчик положения дроссельной заслонки состоит из резистивной дорожки и ползунка.

    Ось дроссельной заслонки приводит ползунок в движение.

    Резистивная дорожка получает напряжение постоянного тока. Часть этого напряжения передается на ползунок.

    Величина напряжения на ползунке зависит от точки, в которой он соприкасается с резистивной дорожкой.

    Напряжение на ползунке (измерительном стержне) зависит от положения, при котором он касается резистивной дорожки. Когда заслонка открывается, измерительный стержень перемещается по резистивной дорожке.

    Поскольку принцип работы обоих датчиков одинаковый, в этом уроке мы рассмотрим только один датчик, а именно датчик на стороне привода дроссельной заслонки.

    Когда угол открытия дроссельной заслонки составляет 0º, измерительный стержень находится рядом с отрицательной клеммой резистивной дорожки. Напряжение составляет примерно 0,5 вольт.

    Когда угол открытия дроссельной заслонки увеличивается, напряжение на измерительном стержне (ползунке) также увеличивается. Когда заслонка полностью открыта, напряжение составляет примерно 4,5 вольт.

    Управление

    После изучения работы отдельных компонентов узла электронно-управляемой дроссельной заслонки, можно переходить к элементам управления.

    Блок управления двигателем отправляет сигнал ШИМ о требуемом положении дроссельной заслонки на модуль управления дроссельной заслонкой.

    Модуль управления дроссельной заслонкой преобразует полученную информацию в сигналы активации схемы выходных каскадов. Выходные каскады переключают ток, протекающий через катушку, и тем самым регулируется положение дроссельной заслонки.

    Датчики положения дроссельной заслонки передают информацию о текущем положении заслонки на блок управления дроссельной заслонкой. Разница между фактическим и заданным значением угла открытия дроссельной заслонки определяет необходимость активации привода управления дроссельной заслонки.

    Приобретайте лизензии и модули к электронному обучающему продукту «Автомобильные основы». Получайте доступ к модулям, тестам и симулятору в LMS ELECTUDE. Изучите работу всех систем механизмов, процессы эксплуатации и обслуживания современных транспортных средств. С платформой ELECTUDЕ это по силам в удобной дистанционной форме.

    Конструкция дроссельной заслонки автомобиля

    Дроссельная заслонка — одна из важнейших частей системы впуска ДВС. В автомобиле она находится между впускным коллектором и воздушным фильтром. В дизельных двигателях дроссель не нужен, но в современных двигателях он все равно устанавливается на случай аварийной работы. Аналогичная ситуация и с бензиновыми двигателями с системой управления подъемом клапана. Основное назначение дроссельной заслонки является подача и регулировка воздушного потока, нужного для образования топливовоздушной смеси. Таким образом, от правильного функционирования заслонки зависит стабильность режимов работы двигателя, уровень расхода топлива и характеристики автомобиля в целом.

    1. Конструкция дроссельной заслонки
    2. Работа дроссельной заслонки
    3. Механическое исполнительное устройство
    4. Как работает электронный привод
    5. Ремонт дроссельной заслонки и ее обслуживание

    Конструкция дроссельной заслонки

    На практике дроссельная заслонка является перепускным клапаном. В открытом положении давление во впускной системе равно атмосферному. Когда она закрывается, давление уменьшается ближе к значению разрежения (это потому, что двигатель фактически работает как насос). Вот почему вакуумный усилитель подключен к впускному коллектору. Конструктивно сама заслонка представляет собой круглую пластину, которую можно поворачивать на 90 градусов. Одно из этих оборотов — это цикл от полного открытия до закрытия клапана.

    Читать еще:  Блок предохранителей на рено меган 3

    Модуль дроссельной заслонки состоит из следующих элементов:

    • Корпус с несколькими патрубками. Они подключаются к системам вентиляции, рекуперации топлива и хладагента.
    • Привод, который приводит клапан в движение, при нажатии педали акселератора водителем.
    • Датчики положения или потенциометры. Они измеряют угол поворота дроссельной заслонки и посылают сигнал в блок управления двигателем. В современных системах установлены два датчика положения, которые могут быть скользящими контактами (потенциометры) или магниторезистивными (бесконтактными).
    • Регулятор холостого хода. Основное назначение — поддерживать определенную частоту вращения коленчатого вала в закрытом режиме. То есть минимальный угол открытия заслонки обеспечивается, когда педаль акселератора не нажата.

    Работа дроссельной заслонки

    Тип дроссельной заслонки определяет ее конструкцию, работу и режим управления. Он может быть механическим или электрическим (электронным).

    Механическое исполнительное устройство

    Старые и дешевые модели автомобилей имеют механический исполнительный клапан, где педаль акселератора соединяется непосредственно с перепускным клапаном с помощью специального троса. Механическая передача для дроссельной заслонки состоит из следующих элементов:

    • педаль акселератора;
    • поворотные рычаги и тяги;
    • стальной трос.

    Нажатие на педаль акселератора запускает механическую систему рычагов, тяг и троса, которая заставляет заслонку вращаться (открываться). В результате в систему начинает поступать воздух и образуется топливовоздушная смесь. Чем больше подано воздуха, тем больше будет поступать топлива и, как следствие, скорость возрастет. Когда дроссельная заслонка находится в положении холостого хода, дроссельная заслонка возвращается в закрытое положение. Помимо базового режима, в механических системах также может быть предусмотрено ручное управление положением дроссельной заслонки с помощью специального рычага.

    Как работает электронный привод

    Второй и самый современный тип заслонки — это электронный дроссель (с электроприводом и электронным управлением). Основные отличия:

    • Отсутствие прямого механического взаимодействия между педалью и заслонкой. Вместо этого используется электронное управление, которое также позволяет изменять крутящий момент двигателя, не нажимая на педаль.
    • Скорость холостого хода двигателя регулируется автоматически при перемещении дроссельной заслонки.

    В состав электронной системы входят:

    • датчики положения педали акселератора и заслонки;
    • электронный блок управления двигателем (ECU);
    • электропривод.

    Электронная система управления дроссельной заслонкой также учитывает сигналы коробки передач, контроль температуры, датчик положения педали тормоза и круиз-контроль.

    Когда педаль акселератора нажата, датчик положения педали акселератора, состоящий из двух независимых потенциометров, изменяет сопротивление в цепи, что является сигналом для электронного блока управления. Последний передает команду на электропривод (двигатель) и поворачивает дроссельную заслонку. Её положение, в свою очередь, отслеживают специальные датчики. Они отправляют в ЭБУ обратную связь о новом положении клапана.

    Датчик текущего положения акселератора представляет собой потенциометр с разнонаправленными сигналами и общим сопротивлением 8 кОм. Он расположен в корпусе и реагирует на вращение вала, преобразуя угол открытия клапана в постоянное напряжение.

    Когда клапан закрыт, напряжение будет примерно 0,7 В, а при полностью открытом — примерно 4 В. Этот сигнал получает контроллер, таким образом узнавая процент открытия дроссельной заслонки. На основании этого рассчитывается количество доставленного топлива.

    Формы выходных сигналов датчиков положения заслонки разнонаправлены. Разница между двумя значениями считается управляющим сигналом. Такой подход помогает бороться с возможными помехами.

    Ремонт дроссельной заслонки и ее обслуживание

    При выходе из строя заслонки ее модуль полностью заменяется, но в некоторых случаях достаточно произвести регулировку (адаптацию) или очистку. Следовательно, для более точной работы систем с электроприводом, дроссель должен быть адаптирован или обучен. Эта процедура предполагает сохранение данных о крайних положениях клапана (открыт и закрыт) в памяти контроллера.

    Адаптация дроссельной заслонки является обязательной в следующих случаях:

    • В случае замены или изменения конфигурации ЭБУ двигателя.
    • При замене заслонки.
    • Если вы заметили нестабильную работу двигателя на холостом ходу.

    Дроссельная заслонка проходит обучение на СТО с помощью специального оборудования. Непрофессиональное вмешательство может привести к неправильной адаптации и ухудшению характеристик автомобиля.

    Если проблема возникает на стороне датчика, на панели загорается индикатор неисправности. Это может указывать на неправильную конфигурацию и прерванный контакт. Еще один частый дефект — утечка воздуха, который можно диагностировать по заметному увеличению оборотов двигателя.

    Несмотря на простоту конструкции, диагностику и ремонт дроссельной заслонки лучше доверить опытному мастеру. Это обеспечит экономичную, комфортную и, главное, безопасную эксплуатацию автомобиля и увеличит ресурс двигателя.

    Что даёт проточка заслонки дросселя?

    Проточка дроссельной заслонки – широко распространённый способ тюнинга автомобиля. Идея возникла много лет назад на Западе, но быстро распространилась среди русских автолюбителей. Выполнить проточку легко и своими руками, но при надобности можно обратиться в СТО, где всё сделают профессионалы . Несомненные преимущества такого решения нравятся автомобилистам. Но будет ли позитивный эффект на практике? Нужно разобраться.

    1 Из чего состоит заслонка?

    Дроссельная заслонка является конструктивным элементом пусковой системы бензиновых двигателей внутреннего сгорания, оснащенных системой впрыска топлива. Она предназначается для регуляции объёма воздуха, который поступает в двигатель для создания топливовоздушной смеси. Дроссельная заслонка располагается между воздушным фильтром и впускным коллектором.

    По принципу работы дроссельная заслонка – это воздушный клапан. В открытом состоянии заслонки давление во входящей системе равняется АД, при закрытом – снижается до вакуума. Эта ее характеристика применяется в работе вакуумного усилителя тормозов, для продувки адсорбера системы контроля паров бензина.

    Дроссельная заслонка может быть оснащена механическим приводом или электрическим механизмом с электронным управлением.

    Дроссельная заслонка с механическим приводом

    Механический привод дроссельной заслонки в наше время установлен на большинстве машин бюджетной категории. Привод обеспечивает связь педали газа и дроссельной заслонки при помощи железного троса.

    Похожие статьи

    Детали собраны в отдельный блок, который включает корпус, дроссельную заслонку на валу, датчик положения в пространстве, контроллер холостого хода.

    Корпус дроссельной заслонки включен в механизм охлаждения двигателя. В нем также установлены патрубки, которые обеспечивают работу систем вентиляции картера и контроля паров бензина.

    Регулятор холостого хода обеспечивает необходимую частоту вращения коленчатого вала движка при неактивной дроссельной заслонке в период запуска, разогрева и при вариациях нагрузки во время активации вспомогательной аппаратуры. Он состоит из тактового электрического двигателя, с которым соединяются клапаны. Они меняют количество воздуха, которое поступает во входящую систему мимо дроссельной заслонки.

    2 Какого ждать эффекта?

    Проточка дроссельной заслонки также именуется МД-тюнингом (модификация дросселя). Чаще всего такую модернизацию можно встретить на автомобилях родного автопрома, но и большинство владельцев иностранных марок не против незначительного изменения конструкции. По идее, проточка даст увеличенную мощность на низких оборотах и уменьшит траты топлива.

    Комментарии автомобилистов-любителей по поводу МД-тюнинга в корне разные. Одни говорят, что им на самом деле удалось заполучить хвалёные преимущества. Другие ругают отсутствие выхлопа или вовсе выход из строя дорогих деталей. Разберем, что даёт такая процедура на самом деле.

    Для начала поговорим о том, что представляет собой МД-тюнинг. Доработка подразумевает создание канавок с обеих сторон заслонки – одной снизу, другой наверху. Готовые фаски должны быть точно откалиброваны по размерам. Иначе велик риск сломать дроссельную заслонку или не получить необходимого результата вообще. Канавки якобы позволяют получить оптимальные показатели воздушно-топливной смеси.

    Перед началом тюнинга рекомендуется свериться с чертежами. Глубина фасок должна быть около 3 мм. Затем нужно убрать все заусенцы на металле. Количество воздуха, который проходит через дроссель, будет достаточным, но не в избытке.

    3 Результаты

    В течение нескольких тысяч км пробега можно заметить разные показания в разных режимах. Итог – никакого заметного изменения нет, расход снижается максимум на 0,2–0,3 л на 100 км. Но есть у такого тюнинга и злостные противники, которые предлагают к рассмотрению свои доводы.

    Большой объем входящего воздуха приводит к слиянию топливовоздушной смеси. При высоких нагрузках это тянет за собой явление детонации – деструктивного явления внутри движка. Перед проведением такого тюнинга рекомендуется досконально изучить тему и принять верное решение. Если нет опыта в тюнинге, лучше обратиться к профессионалам, чтобы не испортить дорогие детали авто или вовсе не привести его в негодность.

    Вакуумный привод дроссельной заслонки

    Система управления приводом дросселя (ТАС) используется для улучшения сгорания, экономии топлива и управляемости. Система ТАС устраняет механическую связь между педалью акселератора и дроссельной заслонкой. Система ТАС устраняет необходимость в модуле круиз-контроля и двигателе управления воздухом на холостом ходу. Ниже приведен список компонентов системы ТАС:

    Модуль ЕСМ отслеживает запрос водителя на разгон при помощи 2 датчиков АРР. Напряжение сигнала датчика 1 положения педали акселератора находится в диапазоне прибл. 0,5-4,5В по мере перемещения педали акселератора с исходного положения в положение конца рабочего хода. Напряжение сигнала датчика 2 положения педали акселератора находится в диапазоне прибл. 0,3-2,2В по мере перемещения педали акселератора с исходного положения в положение конца рабочего хода. Модуль ЕСМ обрабатывает эту информацию вместе с входами других датчиков, чтобы отдать команду на установку определенного положения дроссельной заслонки.

    Дроссельная заслонка управляется двигателем постоянного тока, который называется двигателем привода дроссельной заслонки. Модуль ЕСМ может поворачивать это двигатель вперед и назад путем подачи напряжением батареи и/или подключением массы к 2 внутренним приводам. Дроссельная заслонка удерживается в исходном положении 5,7 градусов или в положении без снабжения энергией посредством использования постоянной силы возвратной пружины. Эта пружина удерживает дроссельную заслонку в положении покоя, когда на двигатель привода не подается напряжение.

    Модуль ЕСМ отслеживает угол дроссельной заслонки с помощью 2 датчиков положения дроссельной заслонки. Напряжение сигнала датчика 1 положения дроссельной заслонки находится в диапазоне 0,95-4,35В по мере перемещения дроссельной заслонки от положения холостого хода в положение полного открытия заслонки. Диапазон напряжения сигнала датчика 2 положения дроссельной заслонки составляет примерно 4,05-0,65 В и изменяется в этих пределах по мере перемещения дроссельной заслонки от положения холостого хода до полностью открытой заслонки.

    Модуль ЕСМ проводит диагностику контроля уровней напряжения обоих датчиков положения педали акселератора, обоих датчиков положения дроссельной заслонки и цепи двигателя привода дроссельной заслонки. Он также отслеживает усилие возвратных пружин, которые находятся внутри корпуса дроссельной заслонки. Эти процедуры диагностики выполняются в различное время в зависимости от того, работает или не работает двигатель, а также от того, проводит ли модуль ЕСМ процедуру переобучения дроссельной заслонки.

    В каждом цикле выключения зажигания ЕСМ проводит быструю проверку возвратной пружины, чтобы убедиться в ее способности установить 7-процентное положение покоя из положения 0 процентов. Это необходимо для гарантии возврата дроссельной заслонки в положение покоя при сбое в контуре двигателя ее привода. Проследите в холодное время года за выполнением команды ЕСМ на установку положения 0% для дроссельной заслонки при включенном зажигании и выключенном двигателе, необходимой для удаления льда, который мог накопиться на заслонке.

    Процедура повторного обучения корпуса дроссельной заслонки

    Модуль управления двигателя (ECM) сохраняет значения, которые включают в себя самые низкие положения для датчика положения дроссельной заслонки и исходные положения. Эти значения стираются или перезаписываются только при перепрограммировании ЕСМ или при выполнении процедуры повторного обучения корпуса дроссельной заслонки. Проследите, чтобы после отключения батареи, модуль ЕСМ немедленно выполнял процедуру повторного обучения корпуса дроссельной заслонки при включении зажигания.

    ECM выполняет процедуру повторного обучения дважды и сравнивает результаты. Если результаты практически такие же, то значения сохраняются, и процедура обучения заканчивается. Следующее — это когда ECM выполняет процедуру обучения:

    ECM выполняет процедуру обучения каждые 15 циклов зажигания.

    ECM подает команду дроссельной заслонке перейти из исходного положения до полностью закрытого положения, затем сохраняет значения напряжения для датчика положения дроссельной заслонки 1 и 2. Данная процедура занимает не более 1 секунды. Если в системе управления дроссельной заслонкой возникает какая-либо ошибка, устанавливается диагностический код неисправности.

    Действия системы УПДС по умолчанию/режимы снижения мощности

    Существует 4 режима снижения мощности, которые модуль управления двигателем (ЕСМ) может устанавливать по умолчанию при возникновении ошибки в системе управления приводом дроссельной заслонки (УПДС). Модуль ECM контролирует указанные ниже условия:

    Если ECM обнаруживает любое из вышеуказанных условий, то входит в режим пониженной мощности с ограниченным функционированием. В ограниченном режиме функционирования ограничен крутящий момент двигателя. Модуль ЕСМ остается в этом режиме пониженной мощности в течение всего цикла зажигания, даже если неисправность устранена.

    Если от датчика положения педали акселератора нет информации, то система входит в принудительный режим пониженной мощности холостого хода. В принудительном режиме холостого хода ECM использует положение датчика положения педали акселератора по умолчанию, которое вычисляется от тормозного переключателя, положения передаточного механизма и скорости автомобиля. Автомобиль может двигаться со скоростью до 32 км/ч (22 миль/ч) в этом режиме, если задействовать коробку передач на передачу и освободить педаль тормоза.

    Если существует условие с цепями TAC, командой исполнительного органа дроссельной заслонки, приводящей к отказу фактического положения, или отказом цепи датчика положения дроссельной заслонки 1 или 2, то ECM входит в режим управления энергопотреблением с пониженной мощностью двигателя. В режиме управления энергопотреблением не происходит управления дроссельной заслонкой. Крутящий момент двигателя контролируется до необходимого значения посредством отключения цилиндра и запаздывания зажигания. Двигатель будет работать на холостых оборотах или на заданной скорости с 2-мя задействованными цилиндрами и ускоряться со всеми 4-мя цилиндрами.

    Если ECM обнаруживает серьезную неисправность в системе TAC, то входит в режим принудительного выключения. В этом режиме ECM отключает систему TAC, топливную систему и систему зажигания, поэтому двигатель запускаться не будет. Режим принудительного выключения происходит тогда, когда ECM обнаруживает серьезное внутреннее условие для ECM, дроссельная заслонка застревает в открытом положении или обнаруживается большая утечка вакуума на впускном коллекторе.

    Клапан управления перекрытием тракта впускного коллектора

    Характеристическая кривая крутящего момента обычного двигателя с наддувом зависит главным образом от того, как среднее давление двигателя изменяется по диапазону частоты вращения двигателя. Среднее давление пропорционально объему массы воздуха в цилиндре при закрытом впускном клапане. Конструкция системы впуска определяет, насколько большой объем воздуха может нагнетаться в цилиндр при определенной частоте вращения коленчатого вала двигателя. В отличие от системы изменения длинны впускного тракта в системе перекрытия впускных трактов с помощью электромагнитных клапанов попеременно открываются и перекрываются отдельные впускные тракты, чем обеспечиваются максимальные тягово-мощностные характеристики и топливная экономичность во всех рабочих режимах двигателя. Клапаны установлены во впускном коллекторе, по одному в каждом впускном тракте цилиндров.

    Заслонка клапана перекрытия впускного тракта является нормально открытой. Когда скорость вращения коленчатого вала и нагрузка на двигатель ниже запрограммированного порогового значения, контроллер ЭСУД подает питающее напряжение на электромагнитный клапан перекрытия впускного тракта, замыкая его на массу, в результате чего разрежение из вакуумной камеры подается на привод заслонки клапана. Заслонка перекрывает впускной тракт, при этом увеличивается скорость потока топливовоздушной смеси во втором впускном тракте цилиндра и повышается степень завихрения в камере сгорания, тем самым обеспечивается более высокий тепловой коэффициент полезного действия. На более высоких оборотах и при более высоких нагрузках заслонка открывает тракт.

    Система перекрытия трактов впускного коллектора состоит из следующих элементов:

    Напряжение зажигания подается непосредственно на электромагнитный клапан перекрытия тракта. Модуль управления двигателем (контроллер ЭСУД) управляет электромагнитным клапаном перекрытия впускного тракта путем замыкания на массу цепи управления через внутренний выключатель формирователя сигналов. Основной функцией формирователя сигналов является замыкание на массу электромагнитного клапана перекрытия впускного тракта. Контролируя напряжение в цепи управления, модуль ECM может определять такие состояния, как: обрыв в цепи управления, короткое замыкание на массу или короткое замыкание этой цепи на напряжение.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector