Camgora.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Турбонагнетатель с механическим приводом

Турбонагнетатель с механическим приводом

Принцип работы

Работа турбонагнетателя предельно проста. Выхлопные газы, проходя в турбину, приводят во вращение ротор. Колесо центробежного компрессора жестко закреплено на оси ротора и вращается с той же скоростью.

Чем большей энергией обладают выхлопные газы, тем быстрее вращаются колеса турбины и, соответственно, компрессоры. Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, тем выше мощность. При этом частота вращения турбокомпрессора может быть очень и очень высокой – 150 тыс. об/мин.

Большинство турбонагнетателей имеют механизм изменения геометрии турбины. Дополнительное кольцо с управляемыми направляющими лопатками позволяет поддерживать поток выхлопных газов не только постоянным, но и управлять им. Так, на низких оборотах, когда поток невелик, поперечное сечение турбины уменьшается, что увеличивает скорость газов, поступающих на колесо, повышая ее мощность. На высоких же оборотах лопасти полностью открывают вход газам, увеличивая пропускную способность турбины.

Плюсы и минусы

Преимущество в том, что в отличие от механических нагнетателей, приводимых от коленчатого вала и отнимающих мощность непосредственно у двигателя, турбонагнетатели используют фактически дармовую энергию, которая в моторе выбрасывается из выхлопной трубы. Это делает турбонагнетатели более эффективными, чем механические.

Одновременно турбонаддув позволяет получить высокие мощности – свыше 300 л. с. с одного литра объема. Двигатель с турбонагнетателем имеет мощность на 40% выше, чем без него. Как ни странно, но турбированные двигатели более экономичны. Низкое КПД двигателя внутреннего сгорание обусловливается потерями на трение и низкой тепловой эффективностью. С увеличением размеров мотора эти потери резко увеличиваются. Небольшие турбированные моторы в этой связи более предпочтительны.

Турбонагнетатели несовершенны и обладают рядом проблемных мест. Самое заметное – эффект «турбоямы». Отсутствие механической связи между компрессором и двигателем приводит к несоответствию между требуемой мощностью, задаваемой водителем педалью «газа» и производительностью компрессора.

Турбокомпрессоры имеют те же недостатки, что и центробежные нагнетатели. Для эффективной работы они должны вращаться с очень высокой скоростью. Плюс высокий нагрев (порядка 1000 °С), сложности в смазке, отводе тепла. Повышенные температуры сказываются не только на смазке деталей турбонагнетателя, но и на нагнетаемом воздухе: его охлаждение оказывается острым вопросом. Для эффективного охлаждения интеркулер рассчитывается и подбирается с особой тщательностью.

Как и в любом нагнетательном устройстве, в турбонагнетателе необходим клапан, спускающий излишнее давление. С турбиной еще сложнее. Здесь нужно не только следить за давлением наддува, но и перепускать выхлопные газы, чтобы снизить избыток давления в выпускном коллекторе, и исключить чрезмерно высокую скорость вращения ротора на высоких оборотах двигателя.

Нужно сказать, что после работы на повышенных оборотах турбина должна «отдохнуть» на холостых оборотах. Поработав так несколько минут, турбина остывает, и ее можно остановить. Устройство, именуемое турботаймером, позволяет при выключении зажигания глушить двигатель через время, которое можно запрограммировать, либо оно определяется автоматически, исходя из температуры мотора. В отсутствие такого прибора водитель должен обеспечить «режим остывания» самостоятельно.

Механические нагнетатели или турбонагнетатели?

Сравнивая нагнетатели с механическим приводом и турбоприводом, надо отметить один факт. Массовое производство позволяет автомобильной промышленности существенно снижать себестоимость моторов с турбонагнетателями. Использование же в тюнинге сопряжено с немалыми трудностями, прежде всего в установке.

Аналогичные центробежные механические нагнетатели более просты в установке и в эксплуатации. Но достоинства турбонагнетателей приводят к тому, что их чаще используют при тюнинге двигателя. Существуют готовые комплекты для различных авто.

Вместо нее расположен приводной шкив с редуктором. Достоинства те-же что и у турбокомпрессора, плюс малый вес. Недостатки также аналогичны турбокомпрессорам. Центробежный нагнетатель вступает в работу не сразу, а лишь по достижении рабочих оборотов. В плюс к недостаткам турбины у этого вида нагнетателей — отбирание мощности у двигателя.

Неверно. Центробежный нагнетатель вступает в работу сразу, а не по достижению оборотов, по причине наличия у оного приводного шкива. Коленвал, вращаясь, вращает компрессор – это вместо «горячей» части турбины, чем и нивелируется т.н. турбояма (турбина работает не сразу а при достижении определенных оборотов), отсуда же и разница в производительности: турбина за счет отсутствия ременной передачи может раскручиваться до больших скоростей и создавать большее давление чем нагнетатель центробежный при равных размерах, отсуда же и более высокий КПД турбодвигателей, т.к. отсутствует ременная передача отбирающая мощность двигателя, а её присутствие дает по существу только один плюс по отношению к турбокомпрессору – отсутствие турбоямы.

Турбонагнетатель — это устройство на нагнетания воздуха под определенным давлением, то есть, простыми словами, это компрессор. Отличие от принципа действия обычных компрессоров в том, что принцип действия основан за счет применения отработанных газов, а не приводным ремнем от коленчатого вала.

Работа турбонагнетателя

Устройство турбонагнетателя позволяет работать ему по такому принципу действия — выхлопные газы при попадании в турбину, начинают вращать ротор. На роторе жестко сидят рабочие колеса центробежного компрессора, которые вращаются с той же угловой скоростью, что и сам ротор.Чем выше энергия отработанных газов, тем быстрее вращаются колеса турбины и, чем больше попадает кислорода, тем больше сгорает топлива и мощнее работает сам турбокомпрессор.

Частота вращения вала и рабочих колес турбонагнетателя может быть довольно высокой и доходить до 150 000 оборотов в минуту.

Много турбонагнетателей имеют возможность менять геометрию турбины с помощью специального механизма. В конструкции этого устройства есть дополнительное кольцо с направляющими лопатками, которыми можно управлять. Они могут поддерживать поток отработанных выхлопных газов не только постоянным, но и изменять этот поток.

При высоких оборотах работы поперечное сечение турбины больше, лопасти полностью открывают подачу газов. Пропускная способность движения газов больше.

Что такое РДТ? Это регулятор давления топлива, который создает нужное давление топлива на форсунки. При его неисправностях, двигатель получает топливо в беспорядочном объеме.

Такая способность регулировки площади сечения турбины позволяет уменьшать расход топлива и минимизировать вредных выхлопные выбросы. Турбонагнетатель с возможностью самостоятельно изменять геометрию турбины, повышает эффективность работы устройства как на высоких, так и на низких оборотах.

Устройство турбонагнетателя

Турбонагнетатель состоит из:

Турбина состоит из:
  • рабочего колеса (1);
  • корпуса (2).

Корпус служит для направления потока движения отработавших газов (3) на рабочее колесо турбины. Отработанные газы служат приводом для рабочего колеса. Поток газов вращает рабочее колесо и выводится через зону вывода отработанных газов.

Компрессор состоит из:
  • рабочего колеса (5);
  • корпуса (6).

Принцип действия компрессора обратно противоположный принципу работы турбины. Кованый стальной вал, на котором жестко закреплено рабочее колесо, соединяется с турбиной. Рабочее колесо, при вращении турбины на высоких оборотах захватывает и сжимает воздух. Далее происходит такое явление — диффузия. То есть, поток воздуха в корпусе компрессора, который имеет низкое давление и высокую скорость преобразуется в поток воздуха с высоким давлением и низкой скоростью движения. Далее, сжатый воздух (8) направляется в мотор, это обеспечивает сжигание большего количества топлива (чтобы топливо сгорало полностью) и увеличивает мощность ДВС авто.

  1. Рабочее колесу турбины.
  2. Корпус турбины.
  3. Выхлопные отработанные газы.
  4. Зона отведения выхлопных газов.
  5. Рабочее колесо компрессора.
  6. Корпус компрессора.
  7. Вал стальной кованый.
  8. Сжатый воздух.

Турбонагнетатели: плюсы и минусы

Принцип действия обычных компрессоров, которые приводятся в движение ременной или кривошипно-шатунной передачей в том, что устройство и принцип действия таких устройств потребляют энергию двигателя. На двигатель создается дополнительная нагрузка.

Турбонагнетатели используют дармовую энергию. Такой принцип действия почти идеальный, так как отработанные газы попросту выбрасываются, а здесь они еще служат приводом ротора и сидящих на нем колес.

Турбонаддув может получить развивать мощность до 300 лс с одного литра объема.
Двигатель с установленным турбонагнетателем (турбонаддувом) может развивать мощность на 40% больше, чем ДВС без него. К тому же, турбированные движки намного экономичнее. У ДВС без турбонагнетателя низкий КПД из-за потери на трение и низкой тепловой эффективности.

Соответственно, при увеличении объема двигателя без турбированного наддува, коэффициент полезного действия еще ниже. Турбированные моторы с малым объемом эффективнее ДВС с большим объемом.

Недостатки турбонагнетателей

При эксплуатации этого устройства появляется, так называемый, эффект турбоямы. Так привод осуществляется без механического соединения с валом двигателя, а за счет физического воздействия газов, то иногда появляется несоответствие в работе турбонаддвува и самого двигателя. То есть, мощность, которую задает водитель нажатием на педаль газа не соответствует мощности компрессора. Такие проблемы в работе составных устройств мотора можно выявить, если делать диагностику авто через ноутбук.

У турбонагнетателей есть еще такие недостатки, которые присущи обычным компрессорам. Чтобы их работа была максимально эффективной, они должны вращаться на максимальной скорости. К тому же, при таком режиме работы температура некоторых деталей доходит до 1000 С, также есть сложность в смазке и отведении тепла.
Высокие температуры уменьшают качество смазки и создают очень горячий поток входящего воздуха. Охлаждение нагнетаемого воздуха — острый вопрос.
Для обеспечения эффективного охлаждения подбирается интеркулер с особой тщательностью по данным режима работы устройства.

В конструкции устройства турбонагнетателя, как и любом другом нагнетающем устройстве, должен быть вмонтирован спускной клапан (стравливающий избыточное давление). С турбиной немного сложнее. В турбине, помимо, отслеживания избыточного давления наддува нужно еще перепускать отработанные газы, чтобы обеспечить снижения излишнего давления во впускном коллекторе для исключения образования чрезмерно высокой скорости вращения ротора при больших оборотах ДВС.

Для увеличения ресурса эксплуатации турбонаддува, турбине надо дать остыть на холостом режиме работы мотора после работы на очень высоких оборотах. Достаточно дать поработать на холостых оборотах несколько минут, затем мотор можно заглушить.

Для удобства водителям, создан специальный турботаймер. Турботаймер — электронное устройство, которое после выключения замка зажигания, позволяет мотору еще некоторое время работать, чтобы эксплуатировать турбонагнетатель в щадящем режиме и не сломать его. Его можно запрограммировать на определенное время или сделать, чтобы работал в зависимости от температуры нагрева двигателя.
Если турботаймера нет, то водителю надо самостоятельно ждать несколько минут на холостом ходу и не глушить мотор сразу.

Механический нагнетатель или турбонагнетатель: что лучше?

Двигатели с турбонагнетателями выпускаются в массовом производстве, благодаря чему цены на них снижаются. Самостоятельно устанавливать его в ДВС, тюнинговать — это достаточно сложное занятие, которое без специальных навыков трудно будет сделать своими руками.

Аналоги — центробежные механические нагнетатели имеют простую конструкцию и их легче эксплуатировать. Ателье по тюнингу авто, чип-тюнингу имеют готовые решение для некоторых двигателей — готовые комплекты турбонаддувов. Турбонаддувы пользуются спросом.

Видео

В этом видео подробно и понятно рассказывается об отличиях турбноганетателя от механического нагнетателя.

Как продлить срок службы турбокомпрессора:

Полезные советы об ошибках при эксплуатации ДВС с турбонагнетателями:

Турбонагнетатели. От простого к сложному

В настоящее время решены, казалось бы, все вопросы, позволяющие форсировать двигатель при помощи системы турбонаддува

Турбина
© Фото: Bosch

Использование турбонагнетателя (или турбокомпрессора) в составе легкового автомобиля сейчас уже никого не удивляет. Увеличение мощности силового агрегата (бензинового двс или «дизеля») при сохранении относительно небольшого рабочего объема двигателя – эту задачу еще в начале XX века решил инженер из Швейцарии Альфред Бюхи, автор патента об использовании энергии выхлопных газов для нагнетания воздуха в цилиндры дизельного двигателя. Идеи господина Бюхи для автомобильной промышленности удалось в полной мере реализовать только после Второй мировой войны. Сначала турбокомпрессорами стали оснащать грузовые автомобили, затем – в 60-х годах прошлого столетия – легковые. В современном автопроизводстве турбинами комплектуются даже двигатели с небольшим рабочим объемом.

Сегодня решены практически все вопросы, позволяющие форсировать двигатель при помощи системы турбонаддува, — поддержание «тяги» как на высоких, так и на низких оборотах двигателя, решение вопросов, связанных с температурными характеристиками выхлопных газов и нагнетаемого компрессором воздуха, снижение сложности конструкции и стоимости ее производства, а также повышение экономичности двигателя и, если это допустимо, его экологической безопасности. Чтобы избавиться от так называемой «турбоямы» на низких оборотах, разработчики турбокомпрессоров придумали системы с двумя турбинами или турбины с изменяемой геометрией лопаток. Последние способны менять свое положение и конфигурацию впускного отверстия, дабы одинаково эффективно работать во всем диапазоне оборотов двигателя.

Двигатель Volvo 2.0 GTDi
© Фото: Volvo

Форсирование двигателя – один из основных моментов, связанных с моторным тюнингом легкового автомобиля. В отличие от так называемого «чип-тюнинга», который выражается в перепрошивке заводских «мозгов» (программного обеспечения), «залитых» в блок управления силовым агрегатом, установка турбонагнетателя – процесс более трудоемкий и затратный. Теоретически турбину можно установить на любую модель автомобиля (даже на ВАЗ). Все зависит от типа и конкретных характеристик силового агрегата и наличия для него соответствующего оборудования. Продажа турбин для легковых автомобилей, оборудованных бензиновыми и/или дизельными моторами, — востребованный бизнес, приносящий радость и удовлетворение автовладельцам, хорошую прибыль компаниям, занятым реализацией турбин, их установкой или ремонтом.

Под воздействием высоких температур и серьезных механических нагрузок возможна поломка системы турбнаддува. Причиной неисправности также может стать качество засасываемого в систему воздуха. Самый неприятный момент для автовладельца, столкнувшегося с неполадками в системе турбнаддува, – снижение мощности двигателя и перебои в работе двигателя, которые при определенных обстоятельствах могут привести к выходу из строя силового агрегата. Шум в работе турбины, повышение расхода масла или топливопотребления – вот еще несколько симптомов, которые сигнализируют о поломке или сбое в работе турбокомпрессора. Вывод: затягивать ремонт турбины крайне нежелательно. Своевременное обращение к специалисту повысит вероятность того, что ремонт окажется менее сложным, а цена – более низкой.

Двигатель Volvo 2.0 GTDi
© Фото: Volvo

Ремонт турбин – прерогатива специализированных мастерских, специалисты которых имеют необходимую квалификацию и опыт работы в данной области. Искать причины поломки и заниматься ее устранением самостоятельно не рекомендуется.

Турбина с изменяемой геометрией, казалось, бы, — самая прогрессивная технология в области разработки систем турбонагнетателей. Как бы не так! Компания Volvo представляет новый прямовпрысковый 2-литровый двигатель GTDi для модели S80, обеспечивающий высокую мощность при низком топливопотреблении. Его «главная деталь» — революционная технология турбонагнетателя.

Читать еще:  Как понять что не работает помпа

До настоящего времени основными поставщиками турбин для автомобилей Volvo были Garrett или Mitsubishi – для легковых моделей, Holset или Schwitzer – для коммерческих. Система турбонагнетателя в составе двигателя 2.0 GTDi разработана инженерами компании Volvo Cars совместно с коллегами из Borg-Warner Turbo System и Benteler Automotive. Разработчики утверждают, что их турбнагнетатель – самый компактный в отрасли для бензиновых двигателей. При том, что он обеспечивает необходимую мощность, новация способствует снижению расхода топлива и уровня выхлопных газов.

Как и раньше, турбина встроена в коллектор, однако и корпус турбины и, соответственно, коллектор выполнены из… листовой стали. В отличие от традиционного «литья» турбина из листовой стали меньше нагревается (работает при большей температуре выхлопных газов) и обеспечивает лучшее сгорание горючей смеси в цилиндрах. Оборудованный новым мотором Volvo S80 потребляет чуть более 8 литров топлива на 100 км пробега. Неплохо для флагмана марки!

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Немного истории и общей теории о турбине

Для понимания роли турбонагнетателя воздуха достаточно вспомнить, что скорость до 200 км/ч, автомобили, оборудованные двигателем внутреннего сгорания, могли развивать уже в 1909 году.

Число выглядит фантастическим ровно до того момента, пока рядом с ним не встаёт рядом другое число: объём двигателя, обеспечившего автомобилю эту скорость, составлял… 28 литров! Естественно, ни о каком массовом производстве подобных монстров не могло быть и речи: они просто не могли обслуживаться без специального габаритного оборудования.

А для того, чтобы транспортное средство стало доступно широким массам потребителям, а не превратилось в аналог паровоза, объём двигателя следовало уменьшить, при этом по возможности выжав из него максимальную мощность.

Идея нагнетателя дополнительного воздушного потока позволила увеличить мощность мотора на пятьдесят процентов. Понять основные моменты, определяющие действие технического узла, несложно, если знать принципы функционирования автомобильного мотора на основе ДВС.

Для эффективного функционирования работы двигателя внутреннего сгорания важен процент соотношения воздуха и топлива в камере внутреннего сгорания. Естественным ограничением объёма смеси топлива и воздуха является объём камеры, куда эта смесь попадает благодаря перепаду давления на такте впуска топлива и где происходит её воспламенение.

Если увеличить количество топливной смеси в камере, при её сгорании будет получена большая мощность, что позволит увеличить возможности автомобиля. Подача смеси в камеру под давлением (компрессия) позволяет этого добиться.

Принцип действия турбонаддува

Между объёмом воздуха в цилиндрах двигателя и объёмом сжигаемого в камере внутреннего сгорания топлива существует прямая связь. При этом чем больше энергии имеют выхлопные газы, тем больший вращательный момент получают турбинные колёса и, соответственно, сам

Особой проблемой при разработке турбонагнетателя является подбор материала, из которого он изготовлен. Турбинные лопасти вращаются со скоростью более десяти тысяч оборотов в минуту и могут разогреваться до тысячи градусов. Вопрос охлаждения отчасти решается за счёт поступления дополнительного воздушного потока.

Как правило, турбонагнетатель воздуха оснащён специальным лопастным кольцом, которое не только в состоянии сохранять фиксированное давление в массе отработанных газов, но и регулировать состояние этого потока. Иными словами, в настоящее время турбонагнетатели имеют функцию изменения внутренней геометрии турбины.

Когда скорость вращения двигателя невелика и поток отработанных выхлопных газов низкий, турбина за счёт уменьшения своего поперечного внутреннего сечения повышает скорость потока отработанных газов, идущих на колесо. Если же обороты двигателя высокие, пропускная способность турбины увеличивается за счёт роста поперечного внутреннего сечения, и, следовательно, плотность потока пропускаемых через неё отработанных газов снижается.

При таком «разумном» управлении диапазон, в котором работа турбо нагнетателя является эффективной, существенно расширяется. Более того, вредные выбросы в атмосферу сокращаются, потребление топлива падает.

В отличие от ранних моделей механических наддувов, которые работали от коленвала и, следовательно, использовали часть мощности двигателя, работа турбонагнетателей использует по сути «дарёную» энергию выхлопных газов.

По этой причине турбо нагнетатели, безусловно, являются более эффективным инженерно-техническим решением.

Кроме этого, турбонагнетатель отличается более высокими мощностными характеристиками. С одного литра двигателя он может «выжать» до трёхсот лошадиных сил.

Если двигатель оборудован турбонагнетателем, к его мощности прибавляется до 40 процентов. При этом налицо существенная экономия топлива.

Если же говорить о коэффициенте полезного действия, то и тут работа турбо наддува идёт «в плюс»: с увеличением размера двигателя его КПД снижается из-за потерь на трение и понижением тепловой эффективности; следовательно, чем меньше размер двигателя (что как раз и даёт наличие турбо наддува), тем выше его КПД.

Недостатки у дано конструкции также присутствуют, и автовладельцу следует их знать.

    На малых оборотах мотора турбо нагнетатель не слишком эффективен. Это естественно – низкое давление выхлопных газов не в состоянии «загнать» в камеру нужный объём воздуха.

Данная проблема отчасти успешно решается за счёт функции изменения геометрии турбины в зависимости от интенсивности работы двигателя и плотности потока выхлопных газов.

Ещё один существенный «минус» — так называемый «эффект турбоямы» , когда водитель газует, но в первый момент автомобиль на это как бы не реагирует. Читайте подробно, что такое турбояма и почему она возникает.

Эффект вызван тем, что без жёсткой механической связи между мотором и компрессором неизбежно возникает несоответствие между эффектом работы компрессора и необходимой мощностью, которая задаётся водителем при нажатии педали газа. Инерция турбины вызывает «провал» оборотов двигателя.

Специалисты борются с данным нежелательным эффектом, настраивая двигатель, используя дополнительный электрический наддув или установку второго турбонагнетателя.

После отключения турбины она не должна сразу останавливаться. Высокая скорость оборотов крыльчатки требует, чтобы после остановки автомобиля турбина проработала какое-то время на «холостых» оборотах и остыла. В противном случае устройство очень быстро приходит в негодность.

Для того, чтобы этого избежать, турбонагнетатель снабжается турботаймером, который программируется на определённое время работы турбины вхолостую после остановки транспортного средства.

Если же автомобиль «доведён» кустарным способом и оснащён турбиной без турботаймера, о её корректном охлаждении и остановке после того, как работа двигателя прекращена, придётся позаботиться самому автомобилисту.

  • Наконец, турбо нагнетатели – не самый дешёвый технический узел в автомобиле , поскольку требует большой точности работы и обладает такой функцией, как изменение геометрии турбины в зависимости от плотности потока отработанных газов.
  • Турбонагнетатель для бензиновых двигателей эффективен на двигателях впрыскового типа. Если возникает желание установить этот узел на карбюраторный мотор, это потребует целого ряда доработок — от корректировки уровня поплавковой камеры до замены жиклеров на большее сечения.

    Если же устройство ставится на инжекторный двигатель, работы ограничатся просто новой прошивкой.

    Не зря ими оснащается большинство автомобилей спортивного класса. Данный технический узел применяют как на этапе производства автомобилей, так и в ситуации, когда автовладелец желает выполнить тюнинг авто. Высокий уровень КПД и ряд решений, найденных для устранения эффекта турбоямы, делают применение турбо нагнетателя наиболее эффективным на уровне остальных способов повышения давления в камере внутреннего сгорания.

    Система турбонаддува состоит из следующих элементов:

    • воздушный заборник и фильтр;
    • дроссельная заслонка;
    • турбинный компрессор;
    • интеркулер;
    • коллектор впускной;
    • соединительные патрубки;
    • напорные шланги

    Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

    Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

    Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

    Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

    Интеркулер

    Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

    Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува.

    Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

    Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

    Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

    Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

    Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

    Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

    Способы компрессии

    За историю автомобилестроения конструкторы создавали различные устройства компрессии воздуха. Что-то осталось на страницах истории, что-то прошло через горнило усовершенствования и дожило до наших дней.

    • механический наддув – производится за счёт работы коленвала и является прародителем всех остальных инженерно-технических решений;
    • турбонагнетатель – нагнетатель воздушной смеси, который функционирует за счёт разницы давления компрессора и выхлопных газов;
    • электрический турбонаддув – способ нагнетания воздуха электрическим компрессором;
    • комбинированный наддув – устройство, совмещающее работу механического и турбо наддува.

    Как выглядит и где находится автомобильная турбина

    Опубликовано Master в 13 марта, 2019

    Двигатель является одним из наиболее важных компонентов автомобиля, а для его эффективной работы и максимальной производительности устанавливается турбина. Как выглядит и где находится автомобильная турбина? Для раскрытия данной темы понадобятся следующие тезисы:

    Для чего нужна автомобильная турбина

    Автомобильная турбина вместе с компрессором является одним из компонентов, необходимых для активации так называемого турбонагнетателя (турбонаддува). Это устройство служит для увеличения объема воздуха внутри двигателя, повышения его производительности и мощности при движении автомобиля. В частности, турбина представляет собой горячую сторону турбокомпрессора и активируется благодаря горячим выхлопным газам автомобиля. Её коллега, компрессор, напротив, представляет собой холодную сторону, выполняющую поглощение воздуха, который потом сжимается.

    Турбина используется для сбора кинетической энергии и энтальпии (термодинамического потенциала), создаваемых газами, а затем для её преобразования в механическую энергию, которая используется для приведения в действие рабочего колеса компрессора. Последний сжимает воздух и поставляет его во впускной коллектор, таким образом, обеспечивая цилиндры двигателя возрастанием объема воздуха и, следовательно, большей мощностью для автомобиля.

    Внешний вид автомобильной турбины

    Часто автомобильные турбины называют «улитками». И в самом деле, внешний вид турбины напоминает моллюска. Но, в отличие от медлительной улитки, турбина способна внутри себя отработать мощную энергию для высокой производительности авто. Если рассматривать современную турбину с компрессором, но данный агрегат состоит из двух «улиток», одна проводит отработанные газы, а вторая прокачивает воздух в цилиндры. Но в комплексе система называется «турбонаддув», и состоит из множества деталей.

    Автомобильная турбина в разрезе

    Основным компонентом турбины с нагнетателем, который выполняет главную функцию, является крыльчатка с лопатками. Она вращается на высокой скорости до 200 000 оборотов в минуту, и действует как компрессор, закачивая поток воздуха в камеру турбины. Далее воздух сжимается, и уменьшается его объем. Но по законам физики, сжатый воздух способен нагреваться. И тут инженеры продумали отличное решение – использовали принцип промежуточного охлаждения воздуха.

    Так появилась деталь под названием «интеркулер». Он стал теплообменником, охлаждающим воздух благодаря хладагенту. Интеркулер также увеличивает мощность мотора до 20%, и предотвращает детонацию выхлопного газа.

    Если ли разница между турбиной в дизельном и бензиновом двигателе? Её практически нет. Главное отличие – это степень наддува. В дизельных двигателях необходимо большое давление, и по этой причине в них более мощные нагнетатели воздуха. Бензиновые двигатели оснащены нагнетателями меньшей мощности, поскольку высокое давление в камере сгорания способно привести к детонации.

    Где расположена турбина в авто

    Где находится турбина в машине? Всё очень просто – «улитку» легко распознать и найти встроенной в сам двигатель. Как правило, двигатели современных автомобилей оснащены турбонаддувом. Все дизельные и спортивные автомобили обязательно со встроенными турбинами, ибо без них невозможно развить необходимую мощность для пробега.

    Турбина в двигателе автомобиля (“улитка”)

    Если в заводской модели авто есть турбокомпрессор, владельцу не нужно будет беспокоиться о каких-либо дополнительных деталях, потому что двигатель транспортного средства уже разработан для обработки мощности, генерируемой турбиной. В случае отсутствии турбины в машине, лучше обратиться к специалисту, который поможет выбрать подходящую модель турбины под двигатель и модель авто.

    Набор ключей комбинированных трещоточных шарнирных 8 шт.

    Набор ключей комбинированных 9 шт.

    H Н О В И Н К А H

    Обновленный каталог 2018 Airline

    • Главная
    • Новости
    • Устройство и принцип действия турбокомпрессора авто

    Устройство и принцип действия турбокомпрессора авто

    Турбонаддув – принцип работы

    Устройство турбины автомобиля не сложное, она состоит из:

    • Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
    • Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
    • Крыльчатки компрессора, а также ее аналога в горячей части;
    • Шарикоподшипникового картриджа;
    • Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.

    Система охлаждения и устройство турбокомпрессора автомобиля

    Охлаждение маслом

    Комплексное охлаждение турбины антифризом и маслом

    Устройство турбонаддува в варианте охлаждения турбин антифризом и маслом более сложное, поскольку в нем имеется отдельный масляный контур, а также система с охлаждающей жидкостью. Зато повышается эффективность работы, устраняются проблемы закипания масла.

    Читать еще:  Темное пятно на камере телефона

    Для такого турбонагнетателя масло служит, как и прежде, для охлаждения и смазки подшипников, а антифриз, подаваемый из общей цепи охлаждения двигателя, предотвращает перегрев и не дает закипать маслу. Из-за такой сложности увеличивается цена турбонагнетателя.

    Что такое интеркулер на авто?

    Конструкторы устройства отмечают, что нагрев воздуха далеко не единственная задача, которую им приходится решать при проектировании турбины. Насущной проблемой также становится ее инерционность – задержка реакции двигателя на открытие в коллекторе дроссельной заслонки.

    Турбина максимально эффективна, когда достигаются определенные обороты вращения коленчатого вала. Среди автолюбителей даже распространено мнение, что турбонаддув включается только тогда, когда скорость автомобиля достигает определенного значения. Хотя турбина работает постоянно, а значение числа оборотов, при которых ее действие наиболее эффективно, для каждого двигателя индивидуальное.

    Отличия твин турбо и битурбо

    Твинтурбо – это система, в которой несколько одинаковых турбин соединены параллельно. Их задача – повысить давление и объем поступающего воздуха. Система управления включает твин-турбо в момент, когда необходимо получить на повышенных оборотах максимальную мощность.

    Подобный компрессор реализован в прославленном японском авто бренда Nissan, который получил имя Skyline Gt-R.

    В нем установлен мотор rb26-dett. Аналогичная система, однако, оснащенная одинаковыми небольшими турбинами позволяет получить заметный прирост мощности даже при малых оборотах, при этом поддерживать турбонаддув постоянно.

    Последовательное соединение разных турбин получило название «битурбо».

    Инновационные разработки

    Когда обороты двигателя небольшие, становится более узким пропускное сечение выхода в турбину выхлопных газов, поэтому «выхлоп» получается более быстрым. Чаще эту систему применяют для дизельных агрегатов, но есть разработки и для бензиновых двигателей.

    Также к инновационным разработкам относится система twinscroll, где благодаря двойному контуру, по которому совершают обход выхлопные газы, получается, что их энергия вращает общий ротор с компрессором и крыльчаткой.

    При этом имеется два варианта реализации:

    1. Выхлопные газы проходят одновременно оба контура и система функционирует как twinturbo.
    2. Второй тип работает наподобие схемы biturbo – имеется два контура, у которых разная геометрия. Когда обороты невысокие, выхлопные газы идут по краткому контуру, увеличивающему энергию и скорость благодаря небольшому диаметру. Если обороты повышаются, выхлопные газы поступают в контур, имеющий больший диаметр – при этом рабочее давление сохраняется во впускной системе и отсутствует запор для выхлопных газов. Распределение регулируют механические элементы — клапаны, переключающие потоки.

    Принцип работы турбины на бензиновом двигателе

    Количество выпускаемых автомобилей с турбированными двигателями постоянно растет, поскольку подобные авто пользуются спросом на рынке. Однако далеко не все автовладельцы знают, как работает турбина на бензиновом двигателе, хотя и проявляют интерес к этой тематике. Дело тут вовсе не в лени, а в чрезмерно сложной подаче материала, делающей его недоступным для понимания большинства автомобилистов.

    Для начала необходимо понять, для чего нужна турбина: она позволяет увеличить мощность небольшого по объему мотора без вреда для него и без увеличения расхода горючего. Но существуют определенные особенности эксплуатации, соблюдение которых даст возможность повысить эффективность, и продлить общее время работы силового агрегата.

    Устройство турбонаддува

    Турбина двигателя, работающего на бензине, состоит из таких элементов:

    1. Корпус подшипников, размещающий в себе ротор с валом и кольцами с лопастями. Вращаясь, они перенаправляют воздух в цилиндры.
    2. Каналы, проходящие через весь корпус. Их функция заключается в доставке масла к вращающимся и трущимся друг о друга элементам, что способствует увеличению срока их службы.
    3. Подшипник скольжения, гарантирующий плавную работу ротора, смазываемого и охлаждаемого маслом.
    4. Корпус, по форме чем-то напоминающий улитку, защищающий составные элементы механизма от механических повреждений.

    Турбонаддув: принцип работы

    Задача турбины – нагнетать воздух в цилиндры, что осуществляется при помощи компрессора. Благодаря этому, смесь из топлива и воздуха насыщается кислородом, что приводит к увеличению КПД и улучшению сгораемости топлива. Таким образом, движок начинает работать эффективнее при прежнем объеме.

    Чтобы понять принцип работы турбины на двигателе, сначала стоит разобраться с тем, как именно работает обычный двигатель. Его функционирование обеспечивается четырьмя последовательными тактами:

    1. Впуск – движение поршня обеспечивает попадание в камеру сгорания топливно-воздушной смеси.
    2. Компрессия – горючая смесь сжимается.
    3. Расширение – выработанная свечами искра приводит к возгоранию смеси.
    4. Выпуск – поршень перемещается вверх, освобождаются и выводятся выхлопные газы.

    Чтобы повысить эффективность работы мотора, идти можно по одному из трех путей:

    1. установить турбонаддув;
    2. увеличить объем двигателя;
    3. повысить количество оборотов коленвала.

    Увеличение объема, безусловно, приведет к повышению эффективности, но это неизбежно повлечет за собой повышенный расход горючего. Повышение оборотов коленчатого вала не всегда возможно по техническим причинам, к тому же, не избежать снижения эффективности из-за потерь энергии во время каждого из тактов.

    Как работает турбонаддув? Он нагнетает в цилиндр предварительно сжатый воздух, вследствие чего количество поступаемого воздуха повышается, а мощность силового агрегата растет без увеличения его объема.

    Когда бензиновый двигатель запускается, газы поступают в турбину, приводя с помощью своей энергии в движение ротор, раскручивающий колесо компрессора, захватывающее воздух, подаваемый в цилиндры. Компрессор увеличивает давление воздуха примерно на 80%.

    Турбина на бензиновом двигателе позволяет повысить мощность примерно на 30%.

    Эксплуатация турбины

    Устройство турбокомпрессора делает его зависимым от качества масла, поэтому пытаться сэкономить на нем не стоит. Несвоевременно поменянное масло может стать причиной нарушений в работе механизма.

    Автомобиль, оснащенный турбиной, нуждается после покупки в замене масла и тщательной прочистке топливной системы, при этом смешивать разные масла нельзя.

    После продолжительной поездки сразу глушить двигатель не рекомендуется, дав ему немного поработать и охладиться. Резкое выключение может сказать на снижении прочности элементов конструкции, вызванном перепадом температуры.

    Турбированный мотор: достоинства и недостатки

    Популярность турбодвигателей вызвана их преимуществами перед обычными, заключающимися в:

    • увеличении мощности до 30% и уменьшении расхода топлива (турбомотор будет потреблять меньше горючего, нежели ДВС аналогичной мощности, но без турбины);
    • уменьшении загрязнения окружающей среды;
    • лучшем соотношении веса агрегата к развиваемой мощности;
    • более тихой работе механизма;
    • возможности оптимизировать другие параметры двигателя.

    Однако есть и свои минусы:

    • требовательность к качеству масла и бензина, что в конечном итоге повышает расходы на эксплуатацию авто;
    • сложный ремонт, требующий применения специального оборудования, выполнить который своими силами маловероятно. Нередко турбина и вовсе оказывается непригодной к ремонту, а её полная замена заметно ударяет по кошельку автовладельца.

    Принцип работы турбины: видео

    —>Автозапчасти и СТО —>

    Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

    Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота.

    Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

    Компрессия — при этом такте происходит сжатие горючей смеси.

    Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

    Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

    Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

    — Установка турбонаддува
    — Увеличение рабочего объёма двигателя
    — Увеличение числа оборотов коленчатого вала двигателя

    Как работает турбина в автомобиле?

    Увеличение рабочего объёма двигателя

    Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

    Увеличение числа оборотов коленчатого вала двигателя

    Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

    Турбонаддув

    В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

    Охлаждение воздуха

    В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

    Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

    Турбонагнетатель с механическим приводом

    В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

    Турбокомпрессор основанный на использовании энергии выхлопных газов

    Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

    Плюсы и минусы турбонаддува

    Как уже известно читателю, турбина в автомобиле не имеет жесткой связи с коленчатым валом двигателя. По логике, подобное решение должно нивелировать зависимость оборотов турбины от частоты вращения последнего.

    Тем не менее, в реальности эффективность работы турбины находится в прямой зависимости от оборотов мотора. Чем сильнее открыта дроссельная заслонка, чем больше обороты мотора, тем выше энергия выхлопных газов, вращающих турбину и, как результат, больше объем воздуха, нагнетаемого компрессором в цилиндры силового агрегата.

    Собственно говоря, «опосредованная» связь между оборотами и частотой вращения турбины не через коленвал, а через выхлопные газы, приводит к «хроническим» недостаткам турбонаддувов.

    Среди них – задержка роста мощности мотора при резком нажатии на педаль «газа», ведь турбине нужно раскрутиться, а компрессору – дать цилиндрам достаточную порцию сжатого воздуха. Подобное явление называют «турбоямой», то есть моментом, когда отдача мотора минимальна.

    Исходя из этого недостатка сразу исходит и второй – резкий скачок давления после того, как двигатель преодолевает «турбояму». Это явление получило название «турбоподхвата».

    И главной задачей инженеров-мотористов, создающих наддувные двигатели, является «выравнивание» этих явлений для обеспечения равномерной тяги. Ведь «турбояма», по своей сути, обуславливается высокой инерционностью системы турбонаддува, ведь для приведения наддува «в полную готовность» требуется определенное время.

    В результате потребность в мощности со стороны водителя в конкретной ситуации приводит к тому, что мотор не способен «выдать» все свои характеристики одномоментно. В реальной жизни это, например, потерянные секунды при сложном обгоне…

    Безусловно, сегодня существует ряд инженерных ухищрений, позволяющих минимизировать и даже полностью исключить неприятный эффект. В их числе:

    • использование турбины с переменной геометрией;
    • использование пары турбокомпрессоров, расположенных последовательно либо параллельно (так называемые схемы twin-turdo или bi-turdo);
    • применение комбинированной схемы наддува.

    Турбина, имеющая переменную геометрию, осуществляет оптимизацию потока выхлопных газов силового агрегата за счет изменения в режиме реального времени площади входного канала, через который они поступают. Подобная схема турбин очень распространена в турбонаддувах дизельных моторов. В частности, именно по этому принципу функционируют турбодизели Volkswagen серии TDI.

    Схема с парой параллельных турбокомпрессоров используется, как правило, в мощных силовых агрегатах, построенных по V-образной схеме, когда каждый ряд цилиндров оснащен собственной турбиной. Минимизация эффекта «турбоямы» достигается за счет того, что две малые турбины имеют гораздо меньшую инерцию, нежели одна большая.

    Система с парой последовательных турбин используется несколько реже двух перечисленных, но она же обеспечивает наибольшую эффективность за счет того, что двигатель оснащается двумя турбинами, обладающими различной производительностью.

    То есть при нажатии на педаль «газа» в действие вступает малая турбина, а при росте скорости и оборотов подключается вторая, и они работают суммарно. При этом эффект «турбоямы» практически исчезает, а мощность нарастает планомерно сообразно ускорению и росту оборотов.

    При этом многие автопроизводители используют даже не два, а три турбокомпрессора, как например компания BMW в своей схеме triple-turbo. А вот инженеры, проектировавшие суперкар Bugatti, вообще оснастили силовой агрегат сразу четырьмя последовательными компрессорами, что позволило достичь уникальных мощностных характеристик при вполне «гражданском» поведении мотора в рядовых режимах езды.

    Схема так называемого комбинированного наддува или, как ее называют автопроизводители, twincharger, подразумевает совместное использование механического и турбонаддува. При малых оборотах двигателя наддув обеспечивается механическим нагнетателем, а турбина вступает в действие при увеличении числа оборотов. При этом механический нагнетатель отключается. По такой схеме работают наддувные моторы TSI компании Volkswagen.

    Читать еще:  Регулятор холостого хода рхх

    Как видим, принципы работы турбонаддува достаточно просты и понятны. При этом сегодня автопроизводители всячески делают ставку на турбированные агрегаты малого рабочего объема, которые обеспечивают достаточную мощность при относительной экологической чистоте выхлопа.

    Но не следует забывать и еще об одном серьезном недостатке – турбированный мотор испытывает гораздо большие нагрузки и, что вполне закономерно, имеет меньший моторесурс, чем безнаддувный агрегат. Соответственно, взвесив все преимущества и недостатки, и следует выбирать тот или иной силовой агрегат.

    Основные преимущества двигателей с турбонаддувом

    1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

    2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

    3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

    4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

    Турбокомпрессор автомобиля: что это такое, устройство и принцип работы

    Турбокомпрессор представляет собой устройство, предназначенное для нагнетания воздуха в цилиндры. Это повышает интенсивность воспламенения топливной смеси и увеличивает мощность двигателя. В среднем она возрастает на 30 – 40 %. Поговорим более подробно, как устроена деталь, где находится и как работает.

    Что такое турбокомпрессор в автомобиле

    Первые турбинные компрессоры появились в начале ХХ века. Их изобретение связывают с американским изобретателем Альфредом Бюхи. Именно он в 1911 году зарегистрирован устройство в патентном бюро США 1911 году. Бюхи удалось добиться очень неплохих показателей – прирост мощности при использовании турбины составил 120 %.

    Изначально турбокомпрессоры применяли на корабельных дизельных и авиационных бензиновых двигателях. Впервые на колесных транспортных средствах их начали использовать в 1938 году. Именно тогда автомобилестроительная компания из Швейцарии Swiss Machine Works Sauer сконструировала грузовик, в котором использовалась эта технология. Вскоре турбинные компрессоры стали широко применять и на легковых автомобилях.

    По сути, турбокомпрессор представляет собой воздушную турбину с несложным строением, которая работает за счет выхлопных газов, выходящих из выпускных клапанов цилиндров. Образовавшаяся энергия используется для нагнетания воздуха в цилиндры. Оно выполняет две функции:

    • увеличивает давление внутри цилиндра;
    • обеспечивает поступление большего количества кислорода.

    Оба фактора благотворно влияют на воспламенение топливной смеси – оно становится более интенсивным и ровным. Это, в свою очередь, уменьшает эффективный расход топлива и увеличивает мощность мотора. Таким образом, технология позволяет увеличить силу двигателя, не увеличивая его объем. Именно это основное назначение рассматриваемого узла автомобильного двигателя.

    В настоящее время турбинный компрессор используется в в подавляющем большинстве моделей легковых автомобилей. Это и не удивительно: устройство позволяет существенно повысить общую мощность автомобильного двигателя, сохранив при этом стоимость транспортного средства почти неизменной.

    Двигатели, оснащенные турбокомпрессором, принято называть турбопоршневыми. А система подачи воздуха в цилиндры с помощью устройства называется турбонаддув.

    Устройство турбокомпрессора

    Конструкция состоит из следующих элементов:

    Похожие статьи

    • Масляный автомобильный насос: устройство, принцип работы и виды
    • Сцепление автомобиля — принцип работы и устройство
    • Автомобильные цепи противоскольжения: история, установка, применение
    • Клапан EGR — что это такое и для чего он нужен
    • Корпус. Представляет собой стальной короб, в который монтируют все остальные детали. Изготавливается из термостойких материалов (обычно стали), так как через компрессор проходят раскаленные отработавшие газы.
    • Колесо турбины. Представляет собой колесо с лопастями, зафиксированное на вале. Когда через лопасти проходят выхлопные газы, колесо начинает вращаться. Также изготавливается из термостойких сплавов.
    • Компрессионное колесо. Выполняет функцию, противоположную турбинному – нагнетает воздух в цилиндры. Закреплено на противоположном конце вала. Поскольку в области компрессионного колеса температура близка к нормальной, чаще всего его изготавливают из алюминиевого сплава. Это позволяет предотвратить потери энергии во время вращения. Обычно со стороны компрессионного колеса имеется отверстие, через которое и происходит забор атмосферного воздуха. Однако на некоторых моделях транспортных средств эта часть приспособления присоединена к воздухофильтру. Это помогает избежать попадания внутрь цилиндров пыли и других загрязнений, которые могу негативно отразиться на их работе.
    • Вал. Проходит через весь корпус приспособления. Представляет собой ось, которая соединяет турбинное и компрессионное колеса. Обеспечивает передачу вращения от одной детали к другой.
    • Подшипники. Обеспечивают свободное вращение вала внутри корпуса.
    • Клапан. Представляет собой клапан, который регулирует количество поступающих на вал турбины выхлопных газов. Чем оно выше, тем больше объем воздуха, поступающего в цилиндры. Положение клапана регулируется блоком управления на основе показаний датчиков, что не требует участия водителя в работе устройства.

    Оба колеса и вал составляют единый узел – ротор турбинного компрессора. Это обусловлено тем, что они жестко связаны воедино.

    Компрессор обычно располагается в непосредственной близости от цилиндроблока. Это обеспечивает максимально короткий путь отработавших газов до устройства. Благодаря этому они теряют минимум своей энергии и обеспечивают наиболее эффективное вращение крыльчатки.

    Принцип работы турбокомпрессора

    Принцип работы приспособления выглядит следующим образом:

    • отработавшие газы из выпускных клапанов по специальному патрубку направляют в часть корпуса устройства, в которой расположено колесо турбины;
    • под воздействием газов колесо начинает вращаться и приводит в движение вал, который расположен в продольной оси корпуса;
    • вал, в свою очередь, приводит в движение компрессионное колесо;
    • компрессионное колесо непосредственно из атмосферы или через воздушный фильтр забирает воздух и нагнетает его во впускные клапаны;
    • в результате в цилиндрах формируется более высокое давление и образуется более высокая концентрация кислорода.

    При этом поступление отработавших газов на колесо регулируется впускным клапаном. Положение его заслонки определяет ЭБУ. Это делается на основе показаний различных датчиков. Чем большая мощность необходима в конкретных условиях передвижения транспортного средства, тем шире открывается заслонка. Действует и обратное правило – при избыточной мощность просвет клапана уменьшается, и работа турбокомпрессора делается менее интенсивной.

    Виды турбин

    Турбины бывают нескольких видов.

    • Традиционный. Наиболее простой тип турбокомпрессора. Его устройство и принцип действия описаны выше.
    • С изменяемой геометрией. В этой разновидности устройства регулировка объема поступающих на турбинное колесо отработавших газов осуществляется не за счет впускного клапана, а за счет изменения положения лопастей колеса. Таким образом, удается максимально точно согласовать нагнетание воздуха в цилиндры и количество оборотов. Чаще всего подобная конструкция используется на дизельных моторах. Однако ее применяют и на бензиновых (обычно на гоночных автомобилях).
    • Раздельный (также его называют twin-scroll). Отличительная особенность этой разновидности турбины заключается в том, что на крыльчатку отработавшие газы поступают сразу несколькими путями. Обычно для этого используется пара трубок (по 2 на каждую пару цилиндров). Одна из них предназначена для быстрого реагирования прибора, а вторая – для постоянного поддержания мощности двигателя на достаточном уровне.
    • Электрический. В отличие от всех остальных разновидностей турбокомпрессоров, электрический работает на за счет выхлопных газов, а от электродвигателя. Он, в свою очередь, запитывается от бортовой электросети транспортного средства. Подобная конструкция позволяет максимально эффективно регулировать нагнетание воздуха в цилиндры – ведь теперь оно не зависит от давления отработавших газов. Чаще всего сегодня электрокомпрессоры устанавливают на гибридные авто.
    • Гибридные. Отличается тем, что представляют собой смесь традиционного и электрического компрессора. Основную часть воздушного потока генерирует именно турбина. Однако если его недостаточно, начинает работать электрический нагнетатель и помогает турбокомпрессору. В результате удается добиться максимально стабильной работы приспособления.
    • Механический. Строго говоря, этот тип нагнетателя не является турбинным, хотя и выполняет ту же самую функцию. Он работает не за счет выхлопных газов, а за счет энергии двигателя. Она передается с карданного вала посредством приводного ремня. Главный недостаток устройств, созданных по этой схеме, заключается в том, что они отнимают часть полезной энергии у мотора и в целом менее эффективны, чем турбины.

    Неисправности и ремонт турбокомпрессоров

    «Симптомами», которые могут говорить о неисправности прибора, могут быть следующие проявления:

    • существенное снижение мощности двигателя машины;
    • падение скорости;
    • появление черного или синего дыма из выхлопной трубы;
    • шум при работе мотора.

    Среди наиболее распространенных неисправностей можно выделить следующие.

    • Утечка воздуха или отработавших газов. Может происходить как из корпуса прибора, так и из патрубков. Приводит к недостаточной силе нагнетания воздуха в цилиндры и потере мощности. Проблема решается заменой прокладок или прибора целиком.
    • Засорение или поломка клапана. Вызывает недостаточную подачу воздуха и потерю мощности мотора. Проблему решают путем чистки клапана или его замены.
    • Утечка масла в турбину. Смазка компрессора осуществляется за счет общей системы смазки двигателя. Если масло начнет попадать в корпус приспособления, то начнет сгорать в цилиндрах. Это приводит к снижению КПД двигателя и появлению синего дыма. Проблему решают путем устранения неисправности системы смазки.
    • Нарушение вращения ротора. Вследствие ослабления креплений или поломки подшипников может нарушиться свободных ход вала, из-за чего эффективность прибора также упадет. Проблему решают путем подтяжки всех крепления или замены подшипников.

    Также следует иметь в виду, что поломка может произойти из-за физического износа устройства, который происходит по окончании срока службы. Он в среднем составляет 150 – 200 тысяч километров пробега.

    Турбонагнетатель – проверка, снятие и установка

    1) Турбонагнетатель – высокотехнологичное устройство, которое может получить серьезные повреждения по причине недостаточной смазки или попадания посторонних предметов во впускной воздуховод. Неисправность турбонагнетателя проявляется потерей мощности двигателя, голубоватым/серым выхлопам или необычными шумами из турбонагнетателя. При подозрении на неисправность турбонагнетателя проведите следующие проверки:

    а) Проверьте впускной воздуховод на герметичность и отсутствие повреждений. Убедитесь в отсутствии препятствий для прохождения воздуха во впускном тракте. Проверьте также фильтрующий элемент воздушного (фильтра на отсутствие засорений и исправность интеркулера.

    б) Проверьте состояние вакуумных шлангов на предмет отсутствия повреждений, пережатий и подсоса воздуха.

    в) Проверьте надежность соединения разъемов проводки и отсутствие в них коррозии.

    г) Проверьте работу привода регулятора давления турбонаддува – заеданий быть не должно.

    д) Проверьте состояние выпускной системы.

    е) Проверьте состояние питающего и возвратного маслопроводов турбонагнетателя.

    ж) При замене турбонагнетателя по причине его неисправности обязательно замените масло в двигателе и масляный фильтр (см. главу 1 Б).

    2) Полная диагностика турбонагнетателя и системы управления двигателем требует специальных технологий и оборудования. Если вышеописанные проверки не выявили причину неисправности, обратитесь в дилерский автосервис.

    Внимание! Перед началом этой процедуры дайте двигателю полностью остыть.

    3) Слейте охлаждающую жидкость, как описано в главе 1 Б.

    4) Распустите хомуты и отсоедините впускной и выпускной воздушные шланги от интеркулера.

    5) Отверните гайки крепления и снимите интеркулер с верхней части двигателя.

    6) Отверните болты крепления и снимите верхний теплозащитный экран с турбонагнетателя (см. рис. 13.6,а,б).

    Рис. 13.6,а. Теплоизоляционные экраны турбонагнетателя

    Рис. 13.6,б. Отверните болты крепления и снимите верхний теплоизоляционный экран…

    7) Отверните болты крепления нижних теплозащитных экранов с задней части выпускного коллектора/каталитического нейтрализатора (см. рис. 13.7).

    Рис. 13.7. …и нижний теплоизоляционный экран

    Подобраться к нижнему болту крепления будет удобнее снизу автомобиля. Большой теплозащитный экран с вентиляционными прорезями можно будет снять с задней части двигателя только после снятия турбонагнетателя.

    8) Распустите хомуты и отсоедините шланг интеркулера и выпускной воздушный шланг от турбонагнетателя (см. рис. 13.8,а,б).

    Рис. 13.8,а. Снятие шланга интеркулера…

    Рис. 13.8,б. …и выпускного воздушного шланга

    9) Отсоедините вакуумный шланг от турбонагнетателя (см. рис. 13.9).

    Рис. 13.9. Отсоедините вакуумный шланг от регулятора давления наддува турбонагнетателя

    10) Отсоедините болты крепления и снимите опоры турбонагнетателя/интеркулера (см. рис. 13.10,а,б).

    Рис. 13.10,а. Отверните болты крепления и снимите опору интеркулера…

    Рис. 13.10,б…и опору турбонагнетателя

    11) Отверните болты крепления и снимите опору каталитического нейтрализатора (см. рис. 13.11).

    Рис. 13.11. Снятие опоры каталитического нейтрализатора

    12) Отверните гайки крепления и отделите каталитический нейтрализатор от турбонагнетателя. Удалите старую прокладку (см. рис. 13.12, а-в).

    Рис. 13.12,а. Снятие каталитического нейтрализатора

    Рис. 13.12,б. Каталитический нейтрализатор соединяется с турбонагнетателем шпильками и гайками

    Рис. 13.12,в. Удаление прокладки с турбонагнетателя

    13) Распустите хомуты и отсоедините шланги системы охлаждения от турбонагнетателя.

    14) Отверните болт крепления опорного кронштейна впускного и выпускного маслопроводов.

    15) Распустите хомут и отсоедините шланг выпускного маслопровода турбонагнетателя.

    16) Отверните болты крепления и снимите фланец впускного/возвратного маслопровода турбонагнетателя; при необходимости отверните также штуцерную гайку и отсоедините другие концы маслопровода от блока цилиндров. Удалите старую прокладку и уплотнительные шайбы (см. рис. 13.16).

    Рис. 13.16. Соединительный фланец впускного/ возвратного маслопроводов турбонагнетателя с прокладкой (турбонагнетатель снят)

    17) Отверните болты крепления и снимите оставшуюся опору, затем отверните гайки крепления и отделите турбонагнетатель от выпускного коллектора (см. рис. 13.17,а,б).

    Рис. 13.17,а. Отверните болты крепления и снимите оставшуюся опору…

    Рис. 13.17,б…затем отверните гайки крепления и отделите турбонагнетатель от выпускного коллектора

    Удалите старую прокладку. Проследите за тем, чтобы не повредить шток привода турбонагнетателя.

    18) При необходимости отверните болты крепления и снимите трубку охладителя системы рециркуляции отработавших газов (см. рис. 13.18).

    Рис. 13.18. Снятие трубки РОГ (системы рециркуляции отработавшик газов)

    19 Снимите оставшийся теплозащитный экран с задней части двигателя (см. рис. 13.19).

    Рис. 13.19. Снимите оставшийся теплоизоляционный экран

    20 Установка турбонагнетателя производится в порядке, обратном по отношению к его снятию, при этом надо учесть следующие дополнения:

    а) Замените все прокладки, уплотнители, шайбы штуцерного болта и самоконтрящиеся гайки.

    б) Затяните болты и гайки моментом, предписанным Спецификациями.

    в) Замените масло в двигателе и масляный фильтр (см. главу 7 Б).

    г) Заполните систему охлаждения (см. главу 7 Б).

    д) Перед запуском двигателя отсоедините разъемы проводки от форсунок и проверните стартером коленвал, пока не установится давление масла.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector