Camgora.ru

Автомобильный журнал
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стробоскоп лазерная указка схема питания

Стробоскоп

Филин

На форуме с 01.04.2007, cообщений 88
Откуда: Москва

Схема и описание самого примитивного стробоскопа.
http://uhu.comtv.ru/strob_1/strob_1.htm
————
Тьху! Через 2 мин после поста нашел небольшую ошибку в тексте. Уже исправил.
==================================================
Ссылка Филина бита. Сам он давно не появлялся.
Думаю он не стал бы возражать против того, чтоб его статья была на Дырчике.
rullON
=====================================================

Примитивный стробоскоп. Rev.2.

Подсветка – оранжевый свех-яркий светодиод TLWR8900 «Пиранья».
Питание – 4 щелочных «пальца» типоразмера АА.
Емкостной датчик – намотанные на свечной провод поверх изоляции 5 –10 витков одножильного провода из телефонной пары (рис.1.). Одножильный провод лучше потому что жестче и витки самопроизвольно не разматываются. Примерный вид сигнала с датчика на нагрузке 10 кОм представлен на рис.2 (индукторное зажигание по схеме как у Д-8Э).

Транзистор VT открывается положительными импульсами сигнала и светодиод вспыхивает.
Для повышения светоотдачи и учитывая импульсный режим, СВД TLWR8900 работает с некоторым превышением предельно допустимого постоянного тока (который равен 70 мА) — примерно 180 – 200 мА при свежей батарее. Без сигнала устройство ничего не жрет и выключатель питания не нужен (Рис.3).

Стробоскоп сделан на маленьком кусочке макетки проводным монтажом. Кусок толстой (2 мм) медной проволоки с колечком под М4 служит для крепления стробоскопа на картере и одновременно соединеняет минус схемы с массой. Естественно, минус схемы (батареи) должен быть с этой проволокой электрически соединен. СВД запаян непосредственно в плату. Прибор в безкорпусном исполнении, «корыто» с батареями питания подключено к плате проводами длиной около 1м (Рис.4).

Рис.4.Стробоскоп (зажигалка в комплект не входит)

Прибор очень чувствительный, светодиод вспыхивает даже если провод датчика просто положить перепендикулярно на свечной, однако лучше все-таки намотать несколько витков: вспышки будут ярче.
При обычном освещении (150 Вт голая лампа под потолком) яркость подсветки стробом вполне достаточна.
Во время испытания зажигания Сузуки-Лукича-Хаммера при питании зажигания от сети через 40 Вт лампочку (искра страшная) произошел пробой на провод датчика сквозь изоляцию свечного провода (3 – 4 искры). Стробоскоп выжил.

Кстати, у светодиода TLWR8900 слишком большой угол расхождения светового пучка (90°). Я специально такой покупал, но вот оказалось, что световой пучок слишком широкий и много света идет безполезно в стороны. Значит можно обойтись и без квадратной пираньи с широким пучком, а использовать «обычный» 5-мм сверх-яркий диод с его 20-30 градусами расхождения луча.

Элементы и замены.

Резисторы – любого типа мощностью от 0,125 Вт и выше, номинал R1 и R2 не очень критичен:
R1 – (6,8. 22) кОм
R2 – (100 кОм. 1 МОм)
R3 – Балласт светодиода. Номинал напротив, очень критичен. Он зависит от напряжения источника питания, типа, цвета и предельно допустимого тока светодиода. Подробнее см. ниже.

Транзистор – составной КТ972А (или Б), а если его нет, то составленный из двух по Дарлингтону. Здесь годятся практически любые «народные» n-p-n транзисторы, маломощный первый (КТ315, КТ3102, КТ3117, буржуйские 2SC1815, 2SC458) и среднемощный второй (КТ815, КТ817, буржуйские BC137 и BC139). Нормально будут работать и два маломощных транзистора, например КТ315 или 2S1815, если не делать ток СВД более 100 мА.

Источник питания – элементы типоразмера АА(316) или ААА(286), лучше щелочные. Для красных, оранжевых и желтых СВД достаточно 3-х штук, а для синих и белых нужно 4 шт. В свой аппарат с оранжевым СВД я поставил 4 шт. просто потому что в барахле нашлось корыто на 4 элемента АА.

Светодиод(ы) – можно использовать практически любые диоды, обеспечивающие достаточную яркость подсветки, но учесть следующее:

Светодиоды бывают очень разные. В моем аппарате из-за опасений типа «импульс короткий и света не хватит» я использовал сверх-яркие светодиоды типа LED LAMP (светодиодная лампа), причем в весьма напряженном режиме. Основное назначение таких диодов — освещение и декоративная подсветка. Представителями этого типа являются, например, диоды TeLux компании Vishay (диоды «пиранья»). У таких диодов предельно допустимый ток заметно выше, чем у обыкновенных индикаторных (50-70 мА против 20-25 мА ). Кроме того, красные, оранжевые и желтые диоды держат значительную импульсную перегрузку (до 1А при длительности импульса 10 мкс, т.е. 14-20 кратную). Зеленые, синие и белые диоды скромнее: 2-3 кратную. Я поставил диод TLWR8900, работающий c 2,5-кратной импульсной перегрузкой — полет нормальный.

В предыдущем варианте статьи я ушами прохлопал поставить акцент на том, что диоды не совсем обычные. Поэтому у некоторых читателей сделавших мой строб с обычными индикаторными (хотя и яркими) диодами, СВД стали дохнуть как мухи. Особенно когда попадались диоды неизвестно-китайского типа. Даже на многие известно-китайские типы из Чипидипа я запарился искать даташиты [1]. В общем, простые диоды горят от прегрузки, ток им нужно меньше.

Для настоящего варианта статьи балласт R3 пересчитан по такому принципу:
1) Если тип и/или характеристики диода неизвестны, то падение напряжения Uf и ток If принимаются 2,0В/20мА для красного, янтарного и желтого диодов и 3,0В/20мА для синего и белого. Если при этом «лампа горела, но Света не давала», то можно ставить впараллель N цепочек из СВД и балласта, только без фанатизма: штук 5-6 максимум, а то батарею начнет подсаживать и процесс пойдет в обратную сторону.
2) Если характеристики СВД известны, то считается для максимально допустимого постоянного тока. Пираньи и без экстрима нормально светят.
3) Напряжение батареи принято равным сумме НРЦ [2] свежих МЦ «батареек», т.е. 1,6 В на банку.
4) Напряжение насыщения транзистора принято Usat= 1,0 В.

Формула: R3 = (n*НРЦ — Usat — Uf) / If

Таблица для батареи 4 х АА = 6,4 Вольта.
Тип светодиода ______________________________ Цвет ________________________ Ток max, If _____ Падение Uf _____ Балластный R3
TLWR8900, TLWO8900, TLWY8900 («пиранья») ___ Красный, оранжевый, желтый __ 70 мА ___________ 2,1 В __________ (47. 56) Ом
TLWB8600, TLWW9600 («пиранья») _____________ Синий, белый ________________ 50 мА ___________ 4,3 В __________ (22. 27) Ом
TLCR5100, TLCY5100 (кругл. 5-мм)_____________ Красный, желтый _____________ 50 мА ___________ 2,1 В __________ (68. 82) Ом
TLCB5100, TLCW5100 (кругл. 5-мм)_____________ Синий, белый ________________ 30 мА ___________ 3,9 В __________ (51. 62) Ом
Другой или неизвестный _______________________ Красный, оранжевый, желтый ___ 20 мА ___________ 2,0 В __________ (180. 220) Ом
Другой или неизвестный _______________________ Синий, белый _________________ 20 мА ___________ 3,0 В _________ (120. 150) Ом

Таблица для батареи 3 х АА = 4,8 Вольта.
Тип светодиода_______________________________ Цвет ________________________ Ток max, If _____ Падение Uf ______ Балластный R3
TLWR8900, TLWO8900, TLWY8900 («пиранья») ___ Красный, оранжевый, желтый __ 70 мА ___________ 2,1 В ___________ (24. 30) Ом
TLCR5100, TLCY5100 (кругл. 5-мм)_____________ Красный, желтый _____________ 50 мА ___________ 2,1 В ___________ (36. 43) Ом
Другой или неизвестный _______________________ Красный, оранжевый, желтый ___ 20 мА ___________ 2,0 В ___________ (91. 110) Ом

Наилучший цвет диода — желтый: при минимальной цене у них максимальная яркость, а еще желтый светит субъективно ярче, так как на желто-зеленую часть спектра приходится максимум чувствительности глаза.

Рис.4.Строб в работе

[1] Например, на продукцию компании с примечательным названием Huey Jann Electronics неизвестен даже номинальный ток: я прикупил 6 ихних белых диодов на подсветку мелкоскопа и дал им от фонаря 25 мА.

[2] НРЦ, Напряжение Разомкнутой Цепи – напряжение на выводах батареи без нагрузки, т.е. максимально возможное. То же, что раньше называли ЭДС.

Как сделать стробоскоп своими руками. Стробоскоп на светодиодах

Владельцы карбюраторных автомобилей не понаслышке знакомы с трудностями процесса регулировки зажигания. Обычно это делается на слух, что не очень удобно. Используя стробоскоп, это процесс можно облегчить. Однако промышленные устройства достаточно дорогие, поэтому многие изготавливают стробоскоп для зажигания своими руками.

Недостатки промышленных моделей

Промышленные устройства зачастую имеют определенные недостатки, из-за которых полезность прибора весьма сомнительна.

Для начала, цена на них бывает вполне существенной. Например, современные цифровые модели обойдутся автолюбителю в 1000 р. Более функциональные модели стоят уже от 1700. Продвинутые стробоскопы стоят порядка 5500 р. Нужно ли говорить, что стробоскоп автомобильный (своими руками сделанный) обойдется автолюбителю в 100-200 рублей.

Часто в заводских устройствах производитель применяет особо дорогую газоразрядную лампу. Лампа имеет определенный ресурс, а через некоторое время ее придется заменить. А это само по себе равносильно приобретению нового заводского устройства.

Почему стоит делать стробоскоп своими руками?

Недостатки заводских и технологичных устройств подталкивают автолюбителя к самостоятельному изготовлению этого устройства. Кроме того, намного дешевле по стоимости оснастить это оборудование светодиодами вместо дорогой лампы. В качестве источника диодов или донора подойдет обыкновенная лазерная указка или фонарик.

Остальные детали также обойдутся в копейки. Особых инструментов при этом не понадобится. Бюджет процесса изготовления стробоскопа составит не более 100 рублей.

Как сделать стробоскоп своими руками?

Схем и вариантов для изготовления существует огромное количество. Однако в большинстве все проекты по созданию этого гаджета похожи. Давайте посмотрим, что понадобится для сборки.

Нам понадобится простой транзистор КТ315. Его без труда можно найти в старом советском приемнике. Обозначение может слегка отличаться, но это не беда. Тиристор КУ112А можно без проблем добыть из блока питания старинного телевизора. Там же можно найти резисторы небольших размеров. Так как мы делаем светодиодный стробоскоп своими руками, то, естественно, понадобится светодиодный фонарь. Для этого лучше приобрести самый дешевый, из Китая. Кроме этого, нужно запастись конденсатором до 16 В любым низкочастотным диодом, маленьким реле на 12 А, проводами, крокодилами, экранированным проводом 0,5 м длиной, а также небольшим куском медного провода.

Собираем прибор

Схема небольшая, а разместить ее можно прямо в том самом китайском фонаре. Так, через отверстие в фонарике сзади желательно пропустить провода для питания устройства. На концах проводов лучше запаять крокодилы. В боковой стенке нужно проделать отверстие, если его уже не сделали китайцы. Через это отверстие будет проложен экранированный провод. На обратном конце необходимо заизолировать оплетку и припаять тот самый кусок медной проволоки к основной жиле провода. Это будет датчик.

Схема устройства и принцип работы

После подачи тока через провода питания конденсатор очень быстро зарядится через резистор. Когда будет достигнут определенный порог заряда, через резистор напряжение будет поступать на открывающийся контакт транзистора. Здесь сработает реле. Когда реле замкнется, оно создаст цепь из тиристора, светодиода и конденсатора. Затем через делитель импульс попадет на управляющий вывод тиристора. Далее тиристор откроется, а конденсатор разрядится на светодиоды. В результате стробоскоп, своими руками изготовленный, ярко вспыхнет.

Через резистор и тиристор базовыевывод транзистора соединяется с общим проводом. Из-за этого транзистор закроется, а реле отключится. Время свечения светодиодов увеличивается, так как контакт разрывается не сразу. Но контакт разорвется, а тиристор будет обесточен. Схема вернется в базовое положение, пока не поступит новый импульс.

Изменяя емкости конденсатора, можно менять время свечения. Если выбрать конденсатор большей емкости, то светодиодный стробоскоп, своими руками изготовленный, будет ярче и дольше светиться.

Прибор на микросхеме

Основной деталью этой несложной схемы является микросхема типа DD1. Это так называемый одновибратор 155АГ1. В этой схеме он запускается лишь от отрицательных импульсов. Управляющий сигнал поступит на транзистор КТ315, а он сформирует эти отрицательные импульсы. Резисторы 150 К ОМ, 1 К ОМ, 10 К ОМ, а также стабилитрон КС139 работают в качестве ограничителей амплитуды входящего сигнала с зажигания авто.

Конденсатор 0,1 мФ вместе с сопротивлением в 20 КОм зададут нужную длительность импульсов, которые будут сформированы микросхемой. При такой емкости конденсатора длительность импульсов будет примерно до 2 мс.

Затем с 6-й ножки микросхемы импульсы, которые к этому моменту будут синхронизированы с зажиганием машины, попадут на базовый вывод транзистора КТ 829. Он здесь в качестве ключа. Результат – это импульсный ток через светодиоды.

Как запитывается этот стробоскоп для авто? Своими руками нам необходимо провести пару проводов к клеммам автомобильного аккумулятора. Нужно обязательно следить за уровнем заряда АКБ.

Если вы верно соберете эту простую схему, то сразу же сможете увидеть, как работает устройство. Если вдруг яркости недостаточно, то это регулируется подбором соответствующего сопротивления.

В качестве корпуса для устройства можно использовать старый или китайский фонарик.

Еще одна схема стробоскопа

Данный стробоскоп на светодиодах, своими руками изготовленный по такому принципу, также можно запитать от автомобильного аккумулятора. Диоды позволят создать защиту от неправильной полярности. В качестве крепежа здесь применяется обычный крокодил. Его нужно прицепить на высоковольтный контакт первой свечи на моторе. Далее импульс пройдет через резисторы и конденсатор и придет на вход триггера. К тому моменту этот вход уже будет включен одновибратором.

До импульса одновибратор находится в обычном режиме. Прямой выход триггера имеет низкий уровень. Инверсный вход, соответственно – высокий. Конденсатор, присоединенный плюсом к инверсному выходу, зарядится через резистор.

Высокоуровневый импульс запускает одновибратор, что переключает триггер и служит для заряда конденсатора через резистор. Через 15 мс конденсатор полностью зарядится, а триггер переключится в обычный режим.

В итоге одновибратор отреагирует на это синхронной последовательностью прямоугольных импульсов длительностью примерно 15 мс. Длительность можно регулировать при помощи замены резистора и конденсатора.

Импульсы второй микросхемы составляют до 1,5 мс. На этот период открываются транзисторы, которые представляют собой электронный коммутатор. Затем через светодиоды протекает ток. По этому принципу работает стробоскоп для авто (своими руками изготовленный он был или нет, не имеет значения – оба устройства светят одинаково).

Ток, проходящий через светодиоды, гораздо больший, чем паспортный. Но, так как вспышки недолгие, то светодиоды не выйдут из строя. Яркости будет достаточно, чтобы использовать этот полезный прибор даже в дневное время.

Этот стробоскоп своими руками можно собрать в корпусе от все того же многострадального карманного фонарика.

Как работать с прибором?

Собрав по одной из приведенных схем устройство, можно просто и легко, а главное, точно настраивать зажигание на карбюраторных двигателях, проверять правильность работы свечей и катушек, контролировать работу регуляторов угла опережения.

Чтобы максимально правильно выставить зажигание, обычно исходят из того, что смесь зажигается за пару градусов до того, когда поршень придет в самую верхнюю точку. Этот угол называется «угол опережения». Когда обороты коленчатого вала растут, угол тоже должен увеличиваться. Так, этот угол выставляют на холостых оборотах, а затем необходимо проконтролировать правильность настройки на всех режимах работы агрегата.

Выставляем зажигание

Запускаем и прогреваем двигатель. Теперь запитываем наш стробоскоп на светодиодах и подключаем датчик. Сейчас нужно направить прибор на метку на корпусе ГРМ и отыскать метку на маховике. Если момент нарушен, то метки будут достаточно далеко друг от друга. Методом вращения корпуса ГРМ добейтесь совпадения меток. Когда вы нашли это положение, зафиксируйте трамблер.

Затем пора поднять обороты. Метки разойдутся, однако это вполне нормальная ситуация. Вот так проводится настройка зажигания с использованием стробоскопа.

Итак, мы выяснили, как изготавливается стробоскоп на светодиодах своими руками.

Стробоскоп на лазерной указке для установки начального момента зажигания топлива


Автолюбители знают, какое значение имеет правильная установка начального момента зажигания топлива в карбюраторных двигателях для хорошей езды. Предлагаемым прибором можно не только устанавливать начальный момент зажигания на оборотах холостого хода, но и найти неработающую свечу, проверить работу катушки зажигания, проконтролировать работу центробежного и вакуумного регулятора угла опережения момента зажигания до 3000 оборотов в минуту. Большая частота просто опасна для двигателя, работающего без нагрузки. Схема стробоскопа приведена на рисунке 1.

Читать еще:  Какой антифриз заливается в ларгус

Импульсы с высоковольтного провода через дифференцирующую цепочку C1,R2 и резистор R1 запускают ждущий одновибратор на элементах DD1.1, DD1.2. Импульсы одновибратора, длительностью около 1,5 миллисекунды, проходят через ключевой каскад на транзисторах VT1, VT2 и включают светодиод лазерной указки. Лазерная указка используется с расширяющей в линию насадкой. Это может быть насадка с изображением человека, динозавра, рыбы или птицы √ главное, чтобы изображение напоминало линию. При солнечной погоде, но в тени, можно использовать указку и без насадки, направляя луч только на подвижную метку. Без насадки яркость лазерного луча увеличивается. Неподвижная метка на корпусе двигателя при солнечном освещении хорошо видна.

Печатная плата стробоскопа дана на рисунке 2 для варианта с применением микросхемы с планарными выводами √ а и микросхемы с выводами в корпусе DIP-14 √ б. Цифры под платой обозначают места установки резисторов с номером, соответствующим схеме на рисунке1. Тонкими линиями обозначены проводники со стороны установки микросхемы. С этой же стороны в отверстия (Э-К-Б) устанавливается транзистор VT1. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Резистор R3, для варианта с микросхемой с планарными выводами, так же можно поставить с этой стороны печатной платы. Печатная плата разработана так, чтобы она поместилась в батарейный отсек лазерной указки. Входная цепь (C1, R1, R2) размещена на торце деревянной бельевой прищепки (рис.3б).

Работу платы сначала проверьте на двигателе с любым светодиодом, подключив его в соответствующей полярности вместо лазера. Указку можно разобрать двумя способами √ выдавливанием со стороны батарейного отсека или вытаскиванием со стороны насадки. Выкручивается насадка, и под нее устанавливается подходящее кольцо толщиной 1-2 мм так, чтобы кольцо упиралось в корпус. Затем вкручивается насадка, постепенно выпрессовывая корпус с лазером. Если надо, операция повторяется с кольцом большей толщины. Можно обойтись без колец, подкладывая под насадку отвертку, но тогда повреждаются края алюминиевого корпуса указки. Вторым способом под крышку батарейного отсека подкладывается гайка М5, М4 или любой другой круглый плотный предмет. Постепенно, закручивая крышку, выдавливаем корпус с лазером. Здесь надо следить за тем, чтобы не повредить кнопку включения лазера. Когда освободится кнопка, ее надо вытащить из корпуса. Этим способом разборки указки нужно пользоваться ОСТОРОЖНО, не прилагая больших усилий, так как можно повредить лазер. В разобранной указке выпаивается кнопочный выключатель (рис.4).

Плата укорачивается бокорезами так, чтобы осталась одна полоска печатного проводника, которая использовалась выключателем. Здесь надо работать аккуратно, чтобы не повредить резистор поверхностного монтажа на 68-82 Ом. Если вы его все-таки повредили √ не беда. Увеличьте номинал резистора R5 до 270 Ом, а проводники, где стоял резистор поверхностного монтажа, закоротите. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Конденсатор С1 лучше взять типа КТ √ трубчатый, так как они рассчитаны для работы с большим напряжением. Под микросхему 564ЛЕ5 и транзистор КТ815 подложите изолирующие прокладки из бумаги или целлофана. Собранную плату проверьте, вставив ее в цилиндр корпуса указки. Внутрь корпуса, где будет стоять плата, вставьте целлофан, если нет штатного. После проверки платы на свободное прохождение в корпус указки, можно спаять указку и плату в монолит медным проводом, пропущенным через отверстия установки кнопочного выключателя. Можно соединить плату и указку проводом МГТФ-0,07. Обязательно припаяйте провод плюса питания на печатный проводник возле лазера, идущий на корпус, место пайки показано на рисунке 4. Вставьте плату и запрессуйте указку в корпус.

Провода питания необходимой длины снабдите зажимами типа ╚крокодил╩ с маркировками или разъемом, входящим в разъем штатной переносной лампы-подсветки. Если подключение к разъему лампы-подсветки не однозначно, то в разрыв плюсового провода надо поставить любой диод плюсом к разъему для защиты от переполюсовки. Провод, идущий на зажим к высоковольтному проводу, должен быть экранированным. Для безопасности работы с включенным двигателем, зажим к высоковольтному проводу сделан из деревянной прищепки (рис.3). Из пачки деревянных прищепок ни одной не нашлось с совпадающими отверстиями, поэтому лучше просверлить новое отверстие Ф6 мм ближе к краю губок. Отверстие легко просверлить, если прищепку зажать в тисках. Одна из губок прищепки оборачивается жестью, шириной не более 3 мм или несколькими витками луженого провода. С наружной стороны прищепки концы жести спаиваются вместе. Сюда же припаивается конденсатор С1. Экранированный провод крепится на прищепке медной скобой. Высоковольтные провода на автомобиле могут иметь трещины, которые визуально не обнаруживаются. Если токосъемник-прищепка будет установлена на провод с трещиной, то произойдет пробой и стробоскоп сгорит. Поэтому необходимо токосъемник обвернуть несколькими витками изоленты или залить герметиком.

Проверьте стробоскоп на работоспособность (сначала со светодиодом!) и загерметизируйте корпус со стороны платы и проводов, а также делитель на прищепке силиконовым герметиком. Чтобы насадка лазера не забилась грязью в ╚бардачке╩ автомобиля, подберите на нее крышку от медицинских пузырьков.

Работать со стробоскопом просто. Перед работой протрите белую краску на метках корпуса и шкива коленвала. Если метки не окрашены, то покрасьте их белой краской √ это пригодится в будущем. Включите хорошо прогретый двигатель на холостых оборотах (600-800). Подключите зажимы напряжения питания. Зажмите прищепкой высоковольтный провод первой свечи и направьте лазер на неподвижную метку, расположенную на корпусе. Затем найдите лучом лазера подвижную метку на шкиве маховика. Если установка момента зажигания на вашем автомобиле нарушена, то подвижная метка может находиться далеко от неподвижной метки. Вращением корпуса распределителя зажигания добейтесь совпадения подвижной (на шкиве коленвала) и неподвижной меток. Зафиксируйте распределитель в этом положении. Далее можно кратковременно увеличить обороты и наблюдать расхождение меток. При увеличении оборотов зажигание должно быть более раннее, для проверки которого существуют две другие неподвижные метки, расположенные через 5 градусов опережения зажигания. На 3000 оборотов в минуту угол опережения зажигания для автомобилей ВАЗ должен быть в пределах 15-17 градусов. Не увеличивайте обороты более 3000! Это опасно для двигателя и лазерной указки! Для проверки работы свечей зажигания поочередно зажимайте прищепкой высоковольтные провода. Если свеча пробивает на корпус или происходит пропуск зажигания, то вспышки лазера будут меньшей частоты. ВНИМАНИЕ! Не направляйте луч лазера в глаза! Не забудьте, что корпус стробоскопа находится под напряжением плюс 13,8 вольт (или другое напряжение, выдаваемое регулятором), поэтому нельзя класть его на корпус автомобиля с включенным лазером, если корпус стробоскопа не изолирован.

Литература: Беляцкий П. Светодиодный автомобильный стробоскоп. — Радио, 2000, 9, с. 43.

Схема и инструкция по сборке стробоскопа на светодиодах своими руками

Устройство, воспроизводящее непрерывный световой поток в импульсном молниеподобном режиме, применяется в различных областях – от индикации системы зажигания до подсветки дискотек и сигнальных устройств спецавтомобилей.

Рассмотрим, как своими руками сделать стробоскоп на светодиодах, как выглядит его схема и печатная плата, какие необходимые инструменты и компоненты для этого понадобятся, из каких этапов состоит сборка электроники, а также какие другие дополнительные процедуры понадобятся для приведения устройства в работоспособное состояние.

Необходимые инструменты

Для изготовления стробоскопа на базе светодиодов своими руками понадобится следующий набор инструментов и приспособлений:

  1. Измерительное устройство.
  2. Набор отверток.
  3. Плоскогубцы.
  4. Паяльная станция или паяльник с необходимыми компонентами.
  5. Дрель или шуруповерт.
  6. Нож по дереву.
  7. Фломастер.
  8. Наждачка.

Важно! При внедрении в схему стробоскопа очень мощных светодиодов возникающие вспышки света могут негативно сказаться на зрении. Поэтому в ходе работы устройства нужно исключить прямой зрительный контакт с подобным светоисточником, например, установив матовый рассеиватель.

Схема и печатная плата

Сделать стробоскоп на светодиодах можно по нескольким схемам. Одной из самых простых и доступных является следующая:

В основе такой схемы используется таймер типа таймер LM555, либо его зарубежный аналог NE555. Он производит импульсы, параметры которых определяются потенциометром или резистором. Особенностью данной модели является то, что плата может включать и 3, и 10 и любое другое количество диодов. Главное преимущество такой схемы – стабильность импульсов и независимость их от потенциала АКБ.

Необходимые компоненты

К выше рассмотренной схеме стробоскопа на светодиодах понадобятся следующие основные компоненты с соответствующими характеристиками:

C11uF 50V
C21000uF 16V
D11N4148
IC1LM555N
Q1IRFZ44N
R1100k
R210k
R356
R45,6 2W
RV11M (variable resistor or potentiometer)
LED1-LED605mm white water clear ultra bright LED

Для сборки схемы потребуется корпус. Можно использовать пластиковую или металлическую основу. Его размеры должны соответствовать пространственному расположению светодиодов, платы и электронной начинки в стробоскопе. Например, для 60-диодной модели его размеры будут около 100х70х30 мм.

Для того чтобы закрыть диоды сверху, понадобится фрагмент оргстекла или другого светопропускающего или матового материала, аналогичный по ширине и длине. Также потребуются винты на восемь М3, пара небольших винтов для фиксации выключателя, стальные держатели (отрезков трубки) размером – 5х22 и 5х10.

Еще потребуется холдер от элемента питания на девять вольт, отрезок проводника, разъем для подключения питания постоянного тока, выключатель и регулятор резистора для переменного тока.

Совет! Обязательными элементами схемы светодиодного стробоскопа являются резисторы. Измерить их основной рабочий параметр – сопротивление – можно мультиметром, а также определить по цветовой маркировке в таблице или вычислить на специальном онлайн-калькуляторе.

Сборка электроники

Сборка схемы стробоскопа осуществляется точно в соответствии с рассмотренной выше схемой. Лед-элементы спаиваются по принципу – катод к аноду соседнего и т. д. Крайние контакты припаиваются к проводникам с коннектором. Выключатель соединяется с холдером для элемента питания. Это позволит работать лампам прибора даже если он будет выключен – при воткнутом в разъем DC-адаптере, как показано на рисунке.

При выборе мощных светодиодов неизбежным результатом их работы будет производство тепла. Металлический корпус может послужить в этом случае в качестве радиатора.

Подготовка корпуса

Когда светодиоды, транзистор и прочие электронные компоненты собраны в одну схему, необходимо подготовить корпус будущего стробоскопа. Прежде всего нужно сделать крепежные отверстия и разъемы:

  1. Для закрепления рассеивателя, платы и корпуса проделываются трехмиллиметровые отверстия для установки держателей и закручивания винтов.
  2. Между платой для светодиодов и пластиковой пластиной устанавливаются держатели на 10 мм, а для скрепления всех деталей – на 22 мм.

Завершение работ

Когда вся схема стробоскопа на светодиодах собрана, его можно подключить к питанию и проверить на работоспособность. Рассмотренный пример позволяет использовать различные источники питания:

  1. Блок питания от 6 до 12 вольт – создает разный уровень свечения и яркость в зависимости от требуемой задачи в разных помещениях.
  2. Элемент питания на 9 вольт. Помешается непосредственно внутри корпуса и дает возможность использовать стробоскоп в автономном режиме вне помещения.

При использовании качественных фирменных компонентов стробоскоп будет работать достаточно долго и не потребует ремонта в ближайшие десятилетия.

Рекомендация! Чтобы стробоскоп излучал различными цветами, вместо обычных светодиодов в схему нужно внедрить RGB-элементы с контроллером. Как вариант, можно наклеить цветную пленку на рассеиватель.

Основные выводы

Чтобы изготовить своими руками стробоскоп на базе одноцветных или RGB светодиодов, необходимы следующие инструменты и компоненты:

  1. Линейка, отвертки, плоскогубцы, наждачка.
  2. Дрель или шуруповерт, винты, держатели.
  3. Паяльник с набором принадлежностей.
  4. Корпус, светодиоды, электронные компоненты, провода, оргстекло.

Собранная схема стробоскопа на простых светодиодах может работать от батареи в девять вольт, размещаемой в его корпусе, и от сетевого блока питания номиналом от 6 до 12 вольт, выдавая разную яркость светового потока.

Если вы знаете другую, простую или сложную схему стробоскопа на светодиодах для конкретной области применения, обязательно поделить этой информацией в комментариях.

Что такое автомобильный стробоскоп и как им пользоваться

Работа известного многим автолюбителям стробоскопа основана на стробоскопическом эффекте, который еще называют зрительной иллюзией. Этот эффект применяется во многих областях: техника, медицина, механика. В автомобильной сфере он занимает особое место и широко используется в процессе наладки системы зажигания автомотора. Однако не всем известно, что такое автомобильный стробоскоп и для чего нужен.

Что такое стробоскоп и чем он полезен автовладельцам

Этот технический прибор, работающий от электричества, помогает отрегулировать угол опережения зажигания с помощью зрительной иллюзии, возникающей из-за совпадения частоты вращения коленвала мотора с частотой мигания прибора. Для этого применяются метка на валу и шкала на корпусе автомотора.

Угол опережения зажигания – это угол, образуемый между мгновением возгорания горючего и приходом поршня к верхней мертвой точке. Если воспламенение смеси происходит в неправильный момент времени, то максимальная мощность, КПД, ресурс двигателя уменьшаются. Важно, чтобы этот угол рос по определенной косой линии при нарастании оборотов. По этой причине для его выставления на холостом ходу и фиксации изменений при росте оборотов до пяти тысяч используется стробоскоп.

Как устроен стробоскоп

Чтобы понять, как пользоваться автомобильным стробоскопом, нужно изучить принцип его действия. Самое простое устройство включает в себя следующие элементы:

  • преобразователь электронапряжения;
  • импульсная световая лампа;
  • блок поджога;
  • индукционный датчик точки искрообразования.

С помощью преобразователя вольтаж аккумуляторной батареи 12 B преобразуется в 300 B для энергопитания лампочки. Он сохраняет свои функции при перепадах электронапряжения в промежутке от 7 до 15 B. Прохождение электротока по первичным намоткам преобразователя обеспечивается открывающимися транзисторами. Это обеспечивает рост напряжения во второй обмотке, которое после поступления на диодный мост дает заряд конденсатору до 400 B. Через лампу и сдерживающий ток варистор заряжается конденсатор узла воспламенения.

Датчик точки образования искры собран с использованием катушки индуктивности, транзистора и тиристора. Катушка наводит электродвижущую силу на закрывающийся базис транзистора, а положительно заряженный вольтаж передается через резистор на главный электрод тиристора. Благодаря его открытию, разрежается конденсатор, величина емкости которого определяет яркость вспышки.

Схема автомобильного стробоскопа представлена на рисунке.

Инструкция по работе с автомобильным стробоскопом модели ПАС-2

Эта марка прибора является одной из самых надежных и приемлемых по цене.

Перед началом работы необходимо подготовить сам прибор: протереть корпус с линзой сухой мягкой тканью. Контрольные метки рекомендуется обозначить мелом, так как это упростит наблюдение за ними. Присоединить советующий зажим к положительной клемме аккумулятора, а другой зажим к корпусу двигателя машины. Поместить сенсор на высоковольтный электропровод свечи зажигания, произвести отсчет частоты вращательного движения коленвала двигателя по шкале прибора, при этом показания прибора умножить на 100.

Что лучше: купить стробоскоп в магазине или сделать собственноручно?

Этот прибор без затруднений получится купить в любом автомагазине. Автомобильный профессиональный стробоскоп работает эффективно и дает очень точные измерения. Но его основным минусом является высокая цена. Стоимость приборов начинается от 1 000 рублей и может доходить до 20 000 рублей. Это объясняется тем, что при их производстве используются дорогие газоразрядные лампы. При выходе из строя такой лампы ее замена будет сопоставима по стоимости с покупкой нового прибора.

Именно поэтому многое автолюбители отдают предпочтение самодельным стробоскопам. Собрать его достаточно легко, для этого потребуются светодиоды, фонарик или лазерная указка. Стоимость нужных материалов не превысит шестисот рублей, но при этом вы получите такой же точный и надежный прибор, как при покупке промышленного варианта.

Как изготовить автомобильный стробоскоп своими руками

Чтобы произвести сборку устройства в домашних условиях потребуются следующие элементы:

  • медные провода;
  • диодный фонарик;
  • конденсаторы с1;
  • низкочастотный диод V2;
  • специализированные зажимы;
  • тиристор КУ112А;
  • резисторы 0.125 Вт;
  • кабель для питания длиной один метр;
  • реле с индексом RWH-SH-112D.

Все упомянутые элементы продаются в любом магазине радиоэлектроники. В качестве корпуса подойдет каркас старого фонарика.

Читать еще:  Как сделать гидроусилитель руля

Схема автомобильного стробоскопа для установки зажигания представлена ниже.

Чтобы собрать прибор нужно проделать дырку в корпусе для шнура питания. На концы электропроводов приварить фиксаторы, не забывая при этом об их полярности, после чего совершить монтаж измерителя с любой стороны корпуса. Проволока из меди должна быть подпаяна к центральному кабелю. Для надежной, точной и долговечной работы требуется произвести изоляцию все штифтов.

Еще одним хорошим вариантом для самостоятельного монтажа является автомобильный стробоскоп на светодиодах. В его базисе лежит микрочип, для работы которой требуются минусовые стимулы. Модель прибора нарисована ниже.

Важно применить резисторы R3, R2, R1, так как с их помощью лимитируются отклонения впускного сигнала. Протяженность импульсов создает условия для мощности C4 вместе с сопротивлением R6. Питание схемы идет от аккумулятора.

Проверка и настройка стробоскопа

Чтобы сделанное своими руками устройство работало без погрешностей требуется выполнить настройку. Для этого необходимо:

  1. Запустить движок машины, прогреть его в течение нескольких минут и оставить работать на холостых оборотах;
  2. Присоединить устройство к аккумуляторной батарее авто;
  3. Нацелить свет на метку и определить статичную точку на маховике;
  4. Прокручивать обшивку зажигания, пока оба момента не соединятся, после чего произвести его фиксацию.

Как показывает практика, приборы, сделанные самостоятельно, практически ни чем не отличаются от заводских по точности своей работы. Необходимо правильно собрать схему и проверить работоспособность собранного стробоскопа.

Стробоскоп на лазерной указке для установки начального момента зажигания топлива

Стробоскоп на лазерной указке для установки
начального момента зажигания топлива

Автолюбители знают, какое значение имеет правильная установка начального момента зажигания топлива в карбюраторных двигателях для хорошей езды. Предлагаемым прибором можно не только устанавливать начальный момент зажигания на оборотах холостого хода, но и найти неработающую свечу, проверить работу катушки зажигания, проконтролировать работу центробежного и вакуумного регулятора угла опережения момента зажигания до 3000 оборотов в минуту. Большая частота просто опасна для двигателя, работающего без нагрузки. Схема стробоскопа приведена на рисунке 1.

Импульсы с высоковольтного провода через дифференцирующую цепочку C1,R2 и резистор R1 запускают ждущий одновибратор на элементах DD1.1, DD1.2. Импульсы одновибратора, длительностью около 1,5 миллисекунды, проходят через ключевой каскад на транзисторах VT1, VT2 и включают светодиод лазерной указки. Лазерная указка используется с расширяющей в линию насадкой. Это может быть насадка с изображением человека, динозавра, рыбы или птицы √ главное, чтобы изображение напоминало линию. При солнечной погоде, но в тени, можно использовать указку и без насадки, направляя луч только на подвижную метку. Без насадки яркость лазерного луча увеличивается. Неподвижная метка на корпусе двигателя при солнечном освещении хорошо видна.

Печатная плата стробоскопа дана на рисунке 2 для варианта с применением микросхемы с планарными выводами √ а и микросхемы с выводами в корпусе DIP-14 √ б. Цифры под платой обозначают места установки резисторов с номером, соответствующим схеме на рисунке1. Тонкими линиями обозначены проводники со стороны установки микросхемы. С этой же стороны в отверстия (Э-К-Б) устанавливается транзистор VT1. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Резистор R3, для варианта с микросхемой с планарными выводами, так же можно поставить с этой стороны печатной платы. Печатная плата разработана так, чтобы она поместилась в батарейный отсек лазерной указки. Входная цепь (C1, R1, R2) размещена на торце деревянной бельевой прищепки (рис.3б).

Работу платы сначала проверьте на двигателе с любым светодиодом, подключив его в соответствующей полярности вместо лазера. Указку можно разобрать двумя способами √ выдавливанием со стороны батарейного отсека или вытаскиванием со стороны насадки. Выкручивается насадка, и под нее устанавливается подходящее кольцо толщиной 1-2 мм так, чтобы кольцо упиралось в корпус. Затем вкручивается насадка, постепенно выпрессовывая корпус с лазером. Если надо, операция повторяется с кольцом большей толщины. Можно обойтись без колец, подкладывая под насадку отвертку, но тогда повреждаются края алюминиевого корпуса указки. Вторым способом под крышку батарейного отсека подкладывается гайка М5, М4 или любой другой круглый плотный предмет. Постепенно, закручивая крышку, выдавливаем корпус с лазером. Здесь надо следить за тем, чтобы не повредить кнопку включения лазера. Когда освободится кнопка, ее надо вытащить из корпуса. Этим способом разборки указки нужно пользоваться ОСТОРОЖНО, не прилагая больших усилий, так как можно повредить лазер. В разобранной указке выпаивается кнопочный выключатель (рис.4).

Плата укорачивается бокорезами так, чтобы осталась одна полоска печатного проводника, которая использовалась выключателем. Здесь надо работать аккуратно, чтобы не повредить резистор поверхностного монтажа на 68-82 Ом. Если вы его все-таки повредили √ не беда. Увеличьте номинал резистора R5 до 270 Ом, а проводники, где стоял резистор поверхностного монтажа, закоротите. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Конденсатор С1 лучше взять типа КТ √ трубчатый, так как они рассчитаны для работы с большим напряжением. Под микросхему 564ЛЕ5 и транзистор КТ815 подложите изолирующие прокладки из бумаги или целлофана. Собранную плату проверьте, вставив ее в цилиндр корпуса указки. Внутрь корпуса, где будет стоять плата, вставьте целлофан, если нет штатного. После проверки платы на свободное прохождение в корпус указки, можно спаять указку и плату в монолит медным проводом, пропущенным через отверстия установки кнопочного выключателя. Можно соединить плату и указку проводом МГТФ-0,07. Обязательно припаяйте провод плюса питания на печатный проводник возле лазера, идущий на корпус, место пайки показано на рисунке 4. Вставьте плату и запрессуйте указку в корпус.

Провода питания необходимой длины снабдите зажимами типа ╚крокодил╩ с маркировками или разъемом, входящим в разъем штатной переносной лампы-подсветки. Если подключение к разъему лампы-подсветки не однозначно, то в разрыв плюсового провода надо поставить любой диод плюсом к разъему для защиты от переполюсовки. Провод, идущий на зажим к высоковольтному проводу, должен быть экранированным. Для безопасности работы с включенным двигателем, зажим к высоковольтному проводу сделан из деревянной прищепки (рис.3). Из пачки деревянных прищепок ни одной не нашлось с совпадающими отверстиями, поэтому лучше просверлить новое отверстие Ф6 мм ближе к краю губок. Отверстие легко просверлить, если прищепку зажать в тисках. Одна из губок прищепки оборачивается жестью, шириной не более 3 мм или несколькими витками луженого провода. С наружной стороны прищепки концы жести спаиваются вместе. Сюда же припаивается конденсатор С1. Экранированный провод крепится на прищепке медной скобой. Высоковольтные провода на автомобиле могут иметь трещины, которые визуально не обнаруживаются. Если токосъемник-прищепка будет установлена на провод с трещиной, то произойдет пробой и стробоскоп сгорит. Поэтому необходимо токосъемник обвернуть несколькими витками изоленты или залить герметиком.

Проверьте стробоскоп на работоспособность (сначала со светодиодом!) и загерметизируйте корпус со стороны платы и проводов, а также делитель на прищепке силиконовым герметиком. Чтобы насадка лазера не забилась грязью в ╚бардачке╩ автомобиля, подберите на нее крышку от медицинских пузырьков.

Работать со стробоскопом просто. Перед работой протрите белую краску на метках корпуса и шкива коленвала. Если метки не окрашены, то покрасьте их белой краской √ это пригодится в будущем. Включите хорошо прогретый двигатель на холостых оборотах (600-800). Подключите зажимы напряжения питания. Зажмите прищепкой высоковольтный провод первой свечи и направьте лазер на неподвижную метку, расположенную на корпусе. Затем найдите лучом лазера подвижную метку на шкиве маховика. Если установка момента зажигания на вашем автомобиле нарушена, то подвижная метка может находиться далеко от неподвижной метки. Вращением корпуса распределителя зажигания добейтесь совпадения подвижной (на шкиве коленвала) и неподвижной меток. Зафиксируйте распределитель в этом положении. Далее можно кратковременно увеличить обороты и наблюдать расхождение меток. При увеличении оборотов зажигание должно быть более раннее, для проверки которого существуют две другие неподвижные метки, расположенные через 5 градусов опережения зажигания. На 3000 оборотов в минуту угол опережения зажигания для автомобилей ВАЗ должен быть в пределах 15-17 градусов. Не увеличивайте обороты более 3000! Это опасно для двигателя и лазерной указки! Для проверки работы свечей зажигания поочередно зажимайте прищепкой высоковольтные провода. Если свеча пробивает на корпус или происходит пропуск зажигания, то вспышки лазера будут меньшей частоты. ВНИМАНИЕ! Не направляйте луч лазера в глаза! Не забудьте, что корпус стробоскопа находится под напряжением плюс 13,8 вольт (или другое напряжение, выдаваемое регулятором), поэтому нельзя класть его на корпус автомобиля с включенным лазером, если корпус стробоскопа не изолирован.

Литература: Светодиодный автомобильный стробоскоп. — Радио, 2000, 9, с. 43.

LED СТРОБОСКОП НА МИКРОКОНТРОЛЛЕРЕ

Проект представляет собой простой стробоскоп для управления светодиодами высокой мощности. Выходной драйвер обеспечивает ограничение тока, подходящее для использования либо со светодиодами 350 мА / 1 Вт, либо со светодиодами 700 мА / 3 Вт, но можно с небольшой доработкой подключить и более мощные. Четыре перемычки обеспечивают возможность изменения ширины импульса, интервала повтора строба и одиночной или двойной стробоскопической вспышки. Также имеется вход запрета стробоскопа, который можно использовать для остановки импульса с помощью переключателя. Готовый код имеет тайминги по умолчанию, которые легко настраиваются путем редактирования значений в EEPROM PIC во время программирования.

Схема стробоскопа на микроконтроллере PIC

В схеме предусмотрена функция стробоскопа с возможностью выбора режимов работы перемычкой. Прошивка обеспечивает точное управление выходным импульсом строба, в то время как вход запрета позволяет внешнему сигналу или переключателю запрещать работу.

Интервал стробирования можно настроить с помощью 4 перемычек на 1, 2, 3 или 4 секунды; время включения строба 30 мс или 100 мс, а также одиночный или двойной стробоскопический импульс. Данные хранятся в PIC EERPOM и могут быть настроены по мере необходимости.

Светодиоды высокой мощности нуждаются в питании от источника тока, чтобы поддерживать постоянный фиксированный ток через светодиод. Здесь использовался простой линейный ограничитель тока на Q1 и Q2. Поскольку светодиод управляется очень короткими импульсами и относительно длинными интервалами между ними, средняя рассеиваемая мощность мала, и ни светодиод, ни выходной MOSFET не требуют радиаторов.

Резисторы R2 + R3 устанавливают ограничение по току. При R2 = 1 Ом и перемычке для R3 ток установлен на 700 мА. Использование резистора 1 Ом для R2 и R3 (всего 2 Ом) устанавливает ограничение на 350 мА.

LED подключается между положительным источником питания и стоком полевого МОП-транзистора Q2 логического уровня. Исток Q2 подключается к земле через R2 + R3. Когда Q2 включается, ток, проходящий через резисторы R2 + R3, вызывает падение напряжения на них. Закон Ома V = I x R. База Q1 подключена к резисторам, и когда напряжение достигает примерно 0,7 В, Q1 начинает включаться. Коллектор Q1 подключен к затвору Q2, так что при включении он подтягивает напряжение на затворе Q2 к земле, что начинает отключать Q2. Это устанавливается в точке, где постоянный ток проходит через R2 / R3. Светодиод может быть установлен на печатной плате или вне платы через разъем CN3. Конденсатор C1 используется для развязки шины питания 5 В. Конденсаторы C2 и C4 требуются стабилизатору напряжения для стабилизации выхода. В оригинальной конструкции используется стабилизатор LDO LM2931-5.0, разработанный для автомобилей. Он выдерживает подключение с обратной полярностью и скачки напряжения 60 вольт на входе. Конечно можете заменить на другие, например 78L05. Если используете 78L05, минимальное входное напряжение должно составлять 7,5 В.

Вольтаж должен быть в пределах от 5,5 до 9 вольт. Блок питания должен обеспечивать ток свыше 700 мА, поэтому подходит любой БП с номиналом 1 А или больше. Можете использовать батареи для питания схемы, но они должны будут обеспечивать высокие токи, необходимые для светодиода. Перезаряжаемые литиевые аккумуляторные батареи на 7,2 В, используемые с радиоуправляемыми моделями, идеально подходят для этого стробоскопа.

Вход GPIO5 в PIC функционирует как запрет стробоскопа. Когда на входе удерживается низкий уровень, выход строба запрещается. Если не нужна эта функция, можете убрать резисторы R5 и R6 и оставить контакт отключенным.

Перемычки выбора режима

Режимы работы стробоскопа выбираются с помощью блока перемычек JP1. Если создаете стробоскоп для конкретного устройства, то можете захотеть подключить входы к земле по мере необходимости, а не вставлять коннектор перемычек.

Конструкция будет работать со светодиодами 350 мА или 700 мА. Если используется светодиод 350 мА, установите в R2 / R3 резисторы 1 Ом, 0,25 Вт, 1%. Если используется светодиод на 700 мА, замените один из резисторов перемычкой и используйте резистор 1 Ом, 0,6 Вт и 1% для другого.

Нет необходимости использования радиаторов на светодиодах и выходном полевом МОП-транзисторе за счет очень короткого рабочего цикла. Важно не позволять светодиоду оставаться включенным постоянно либо из-за неисправности, либо из-за изменения на максимум ширины импульса / частоты повторения.

Вы можете подключить до трех светодиодов последовательно, используя CN3 для внешнего подключения. Входное напряжение блока питания должно быть больше суммы прямых напряжений светодиодов +1 вольт. Например если используете два белых светодиода с прямым напряжением 3,6 вольт, входное напряжение источника питания должно быть: 2 x 3,6 вольт + 1 вольт = 8,2 вольт. В этом случае идеально подойдет источник питания на 9 вольт. Для трех последовательно соединенных светодиодов используйте блок питания на 12 В.

Типы полевых МОП-транзисторов

Эта схема разработана на основе полевого МОП-транзистора с логическим уровнем Q2, который имеет пороговое напряжение затвора около 2,5 В. Стандартные МОП-транзисторы без логического уровня с более высокими пороговыми напряжениями затвора не могут включиться в достаточной степени, чтобы обеспечить ток 700 мА для светодиода. Хотя светодиод будет гореть и может казаться очень ярким, он не будет работать при желаемом токе 700 мА.

Тестировалась схема с STP36NF06L, STP20NF06L и NTD5867NL. NTD5867NL поставляется в корпусах IPAK-369D со сквозным отверстием и DPAK smd, поэтому не подходит для компоновки данной печатной платы.

Режимы работы стробоскопа

Ширина импульса, интервал и режим строба выбираются пользователем с помощью блока перемычек JP1. Есть два режима стробирования, одиночный и двойной импульс. Двойной режим имеет (по умолчанию) время паузы 175 мс между двумя импульсами. Как показано на диаграмме, интервал измеряется от конца одной группы импульсов до начала следующей группы.

Все таймеры для ширины импульса, интервала и двухрежимного интервала настраиваются путем редактирования значений в EEPROM PIC перед записью HEX в PIC. Это легко сделать, просто загрузите HEX-файл из раздела загрузки прошивки в приложение-программатор. Отредактируйте значения в EEPROM, как показано ниже, а затем запишите код и данные EEPROM в PIC.

Предположим, нужна ширина импульса 40 мс (40 x 1 мс) и интервал 1,3 секунды (13 x 100 мс), установим данные в адресе от 00 до 28 (40 десятичных = 28 шестнадцатеричных). Для интервала 1,3 секунды измените данные в адресе 03 на 0D (13 десятичное = шестнадцатеричное 0D).

Значения, показанные в приведенном примере, являются значениями по умолчанию при загрузке прошивки. Если не измените их, схема будет использовать эти тайминги.

Преобразование десятичных значений в шестнадцатеричные

В зависимости от программатора значения, которые нужно ввести, вероятно, будут в шестнадцатеричном формате. Самый простой способ преобразовать десятичные значения в шестнадцатеричный — через Google. Префикс 0x в результате просто говорит, что значение является шестнадцатеричным.

Прошивка контроллера

С этой схемой можно использовать микроконтроллер PIC 12F629 или 12F675. Один и тот же код прошивки используется с любым из них. Загрузите необходимые файлы из архива. Файл HEX готов к программированию прямо в PIC. Файл asm — это исходный код, который можете изменить или просто просмотреть как он работает.

Читать еще:  Почему выбрасывает тосол из радиатора

Сборка стробоскопа

Когда соберете плату в соответствии со схемой, подключите питание к плате и проверьте напряжение между контактами 1 и 8 разъема IC1. Должно быть от 4,9 до 5,1 вольт, если не будет работать — выясните причину и устраните неисправность.

Светодиод припаян к медной стороне печатной платы. Убедитесь, что клеммы анода и катода правильно подключены. Не смотрите прямо на светодиод при тестировании и эксплуатации. Интенсивный световой поток может повредить глаза.

А это полностью собранная плата с питанием, подключенным к CN1, и герконовым переключателем, подключенным к входу блокировки стробоскопа CN2.

Для схемы светодиодного стробоскопа в идеале требуется источник питания постоянного тока в диапазоне от 5,5 до 9 вольт и рассчитанный на 1 ампер или более. С указанным регулятором LDO можете использовать 4 батареи AA большой емкости по 1,5 В (не перезаряжаемые NiMH, поскольку выходного напряжения 4,8 В недостаточно для правильной работы). Схему более сложного стробоскопа с ЖК дисплеем смотрите по ссылке.

Стробоскоп на лазерной указке

Стробоскоп на лазерной указке

Автолюбители знают, какое значение имеет правильная установка начального момента зажигания топлива в карбюраторных двигателях для хорошей езды. Предлагаемым прибором можно не только устанавливать начальный момент зажигания на оборотах холостого хода, но и найти неработающую свечу, проверить работу катушки зажигания, проконтролировать работу центробежного и вакуумного регулятора угла опережения момента зажигания до 3000 оборотов в минуту. Большая частота просто опасна для двигателя, работающего без нагрузки. Схема стробоскопа дана на рисунке 1.

Импульсы с высоковольтного провода через дифференцирующую цепочку C1, R2 и резистор R1 запускают ждущий одновибратор на элементах DD1.1, 1.2. Импульсы одновибратора, длительностью около 1,5 миллисекунды, проходят через ключевой каскад на транзисторах VT1, VT2 и включают светодиод лазерной указки. Лазерная указка используется с расширяющей в линию насадкой. Это может быть насадка с изображением человека, динозавра, рыбы или птицы – главное, чтобы изображение напоминало линию. При солнечной погоде, но в тени, можно использовать указку и без насадки, направляя луч только на подвижную метку. Без насадки яркость лазерного луча увеличивается. Неподвижная метка на корпусе двигателя при солнечном освещении хорошо видна.

Печатная плата стробоскопа дана на рисунке 2 для варианта с применением микросхемы с планарными выводами – а и микросхемы с выводами в корпусе DIP-14 – б. Цифры под платой обозначают места установки резисторов с номером, соответствующим схеме на рисунке1. Тонкими линиями обозначены проводники со стороны установки микросхемы. С этой же стороны в отверстия (Э-К-Б) устанавливается транзистор VT1. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Резистор R3, для варианта с микросхемой с планарными выводами, так же можно поставить с этой стороны печатной платы. Печатная плата разработана так, чтобы она поместилась в батарейный отсек лазерной указки. Входная цепь (C1,R1,R2) размещена на торце деревянной бельевой прищепки (рис.3б).

Работу платы сначала проверьте на двигателе с любым светодиодом, подключив его в соответствующей полярности вместо лазера.

Указку можно разобрать двумя способами – выдавливанием со стороны батарейного отсека или вытаскиванием со стороны насадки. Выкручивается насадка, и под нее устанавливается подходящее кольцо толщиной 1-2 мм так, чтобы кольцо упиралось в корпус. Затем вкручивается насадка, постепенно выпрессовывая корпус с лазером. Если надо, операция повторяется с кольцом большей толщины. Можно обойтись без колец, подкладывая под насадку отвертку, но тогда повреждаются края алюминиевого корпуса указки. Вторым способом под крышку батарейного отсека подкладывается гайка М5, М4 или любой другой круглый плотный предмет. Постепенно, закручивая крышку, выдавливаем корпус с лазером. Здесь надо следить за тем, чтобы не повредить кнопку включения лазера. Когда освободится кнопка, ее надо вытащить из корпуса. Этим способом разборки указки нужно пользоваться ОСТОРОЖНО, не прилагая больших усилий, так как можно повредить лазер.

В разобранной указке выпаивается кнопочный выключатель (рис.4).

Плата укорачивается бокорезами так, чтобы осталась одна полоска печатного проводника, которая использовалась выключателем. Здесь надо работать аккуратно, чтобы не повредить резистор поверхностного монтажа на 68-82 Ом. Если вы его все-таки повредили – не беда. Увеличьте номинал резистора R5 до 270 Ом, а проводники, где стоял резистор поверхностного монтажа, закоротите. Транзистор VT2 и конденсатор C2 устанавливаются со стороны печатных проводников. Конденсатор С1 лучше взять типа КТ – трубчатый, так как они рассчитаны для работы с большим напряжением. Под микросхему 564ЛЕ5 и транзистор КТ815 подложите изолирующие прокладки из бумаги или целлофана. Собранную плату проверьте, вставив ее в цилиндр корпуса указки. Внутрь корпуса, где будет стоять плата, вставьте целлофан, если нет штатного. После проверки платы на свободное прохождение в корпус указки, можно спаять указку и плату в монолит медным проводом, пропущенным через отверстия установки кнопочного выключателя. Можно соединить плату и указку проводом МГТФ-0,07. Обязательно припаяйте провод плюса питания на печатный проводник возле лазера, идущий на корпус, место пайки показано на рисунке 4. Вставьте плату и запрессуйте указку в корпус.

Провода питания необходимой длины снабдите зажимами типа «крокодил» с маркировками или разъемом, входящим в разъем штатной переносной лампы-подсветки. Если подключение к разъему лампы-подсветки не однозначно, то в разрыв плюсового провода надо поставить любой диод плюсом к разъему для защиты от переполюсовки. Провод, идущий на зажим к высоковольтному проводу, должен быть экранированным. Для безопасности работы с включенным двигателем, зажим к высоковольтному проводу сделан из деревянной прищепки (рис.3). Из пачки деревянных прищепок ни одной не нашлось с совпадающими отверстиями, поэтому лучше просверлить новое отверстие Ф6 мм ближе к краю губок. Отверстие легко просверлить, если прищепку зажать в тисках. Одна из губок прищепки оборачивается жестью, шириной не более 3 мм или несколькими витками луженого провода. С наружной стороны прищепки концы жести спаиваются вместе. Сюда же припаивается конденсатор С1. Экранированный провод крепится на прищепке медной скобой. Высоковольтные провода на автомобиле могут иметь трещины, которые визуально не обнаруживаются. Если токосъемник-прищепка будет установлена на провод с трещиной, то произойдет пробой и стробоскоп сгорит. Поэтому необходимо токосъемник обвернуть несколькими витками изоленты или залить герметиком.

Проверьте стробоскоп на работоспособность (сначала со светодиодом!) и загерметизируйте корпус со стороны платы и проводов, а также делитель на прищепке силиконовым герметиком. Чтобы насадка лазера не забилась грязью в «бардачке» автомобиля, подберите на нее крышку от медицинских пузырьков.

Работать со стробоскопом просто. Перед работой протрите белую краску на метках корпуса и шкива коленвала. Если метки не окрашены, то покрасьте их белой краской – это пригодится в будущем. Включите хорошо прогретый двигатель на холостых оборотах (600-800). Подключите зажимы напряжения питания. Зажмите прищепкой высоковольтный провод первой свечи и направьте лазер на неподвижную метку, расположенную на корпусе. Затем найдите лучом лазера подвижную метку на шкиве маховика. Если установка момента зажигания на вашем автомобиле нарушена, то подвижная метка может находиться далеко от неподвижной метки. Вращением корпуса распределителя зажигания добейтесь совпадения подвижной (на шкиве коленвала) и неподвижной меток. Зафиксируйте распределитель в этом положении. Далее можно кратковременно увеличить обороты и наблюдать расхождение меток. При увеличении оборотов зажигание должно быть более раннее, для проверки которого существуют две другие неподвижные метки, расположенные через 5 градусов опережения зажигания. На 3000 оборотов в минуту угол опережения зажигания для автомобилей ВАЗ должен быть в пределах 15-17 градусов. Не увеличивайте обороты более 3000! Это опасно для двигателя и лазерной указки! Для проверки работы свечей зажигания поочередно зажимайте прищепкой высоковольтные провода. Если свеча пробивает на корпус или происходит пропуск зажигания, то вспышки лазера будут меньшей частоты. ВНИМАНИЕ! Не направляйте луч лазера в глаза! Не забудьте, что корпус стробоскопа находится под напряжением плюс 13,8 вольт (или другое напряжение, выдаваемое регулятором), поэтому нельзя класть его на корпус автомобиля с включенным лазером, если корпус стробоскопа не изолирован.

Стробоскоп для установки зажигания на алиэкспресс

Cтробоскоп – это прибор для наблюдения быстрых периодических движений, его действие основано на стробоскопическом эффекте. Он необходим для настройки и контроля угла опережения зажигания.

Стробоскоп Вымпел СТ-02

Назначение Автомобильный стробоскоп Вымпел СТ — 02 предназначен для измерения и правильной устан.

Стробоскоп Вымпел СТ-01

Назначение Автомобильный стробоскоп Вымпел СТ — 01 предназначен для измерения и правильной установ.

Стробоскоп Вымпел СТ-03

Назначение Автомобильный стробоскоп Вымпел СТ — 03 предназначен для проверки правильной устан.

Стробоскоп Вымпел СТ-04

Назначение Автомобильный стробоскоп Вымпел СТ-04 предназначен для измерения и п.

Стробоскоп Astro L1

Назначение Автомобильный многофункциональный стробоскоп Astro L1 предназнач.

Стробоскоп Astro L5

Автомобильный многофункциональный стробоскоп Astro L5 предназначен для измерения ряда электрич.

Стробоскоп Astro M5

описаниеАвтомобильный многофункциональный стробоскоп Astro M5 предназначен для измерения ряда .

Стробоскоп Focus F1

назначениеАвтомобильный стробоскоп повышенной яркости свечения Focus-F1 предназначен для проверки и .

Стробоскоп Multitronics SC/10

Автомобильный портативный стробоскоп SC10 предназначен для проверки и регулировки начальной установк.

Стробоскоп Multitronics C2

НАЗНАЧЕНИЕ Автомобильный стробоскоп-тахометр повышенной яркости свечения «МУЛЬТИ.

Стробоскоп Кварц-М

НАЗНАЧЕНИЕ Автомобильный стробоскоп Кварц-М предназначен для точной установки мо.

Подробнее у меня в Бортжурнале

После очередной возни с машиной, сбился уоз. Пометку на распределителе, как всегда не сделал, — забыл. Выставленного на слух угла явно было много, была детонация. А уменьшая угол, былой тяговитости так и не добился. У знакомых стробоскопа не нашлось. Покупкой нового озадачился, но после похода по магазинам желание отпало, платить за «фонарик» 1000 деревянных! Совсем уже спекулянты оборзели!
После поиска вариантов выхода из данной ситуации, решил сделать его сам! Единственная беспроблемная схема с простотой монтажа и без различной настройки, был автомобильный стробоскоп из лазерной указки автора Н. ЗАЕЦ «Светодиодный автомобильный стробоскоп» («Радио», 2000, № 9).

Так его в последнее время перерисовали для более удобного чтения.

Ища сведения о работоспособности данной схемы, наткнулся на блог EverGrand У него выложена «печатка» в SL6, для сведения и последующего травления на плате, с очень компактной компоновкой

СПАСИБО ЕМУ ОГРОМНОЕ! Очень приятный и отзывчивый парень! Довелось с ним пообщаться, по причине постоянной подачи напряжения на транзисторы (стробоскоп постоянно горел при подключении к аккумулятору).
Причина была не в схеме, а в нерабочих микросхемах К561ЛЕ5. Коих клепают «узкоглазые» без проверки! Заработала только третья! Купленная микросхема!

Что потребуется для сборки:
1. Микросхема — К561ЛЕ5 (я брал аналог HCF4001BE)Транзисторы:
2. КТ315А — 1 шт.
3. КТ815А — 1 шт.

Резисторы:
4. 15к — 1 шт.
5. 3к — 1 шт.
6. 100к — 1 шт.
7. 4,7к — 1 шт.
8. 430 Ом — 1 шт. (я поставил 100 Ом, так как с предыдущим светил тускло)
9. 1к — 1 шт.

Конденсаторы:
10. 68 pF — 1 шт.
11. 3300 pF — 1 шт.

12. Кабель антенный для телевизора.
13. Прищепка
14. Светодиоды в различном исполнении.

Переводил используя технологию «ЛУТ», после травил, сверлил, паял 🙂

При воспроизведении данного устройства, очень внимательно относитесь к микросхемам! Как показал опыт, их брак очень велик!

Для точной установки зажигания на двигателе необходимо использовать специальные приборы – стробоскопы. Их можно приобрести в автомагазинах или изготовить своими руками. Во втором случае вы сэкономите приличную сумму и сделаете наиболее подходящее устройство для вашей модели авто.

Особенности заводских стробоскопов и принцип их работы

Точно отрегулировать зажигание без использования стробоскопа довольно сложно. Такой прибор существенно ускоряет процесс настройки, лампа сигнализирует о появлении искры, что позволяет правильно установить угол опережения зажигания. Несмотря на то, что заводские приборы работают эффективно и точно, многие автолюбители не спешат их покупать. Главным сдерживающим фактором можно назвать высокую цену стробоскопов. В большинстве моделей используется дорогостоящая газоразрядная лампа, её замена приравнивается к покупке нового прибора.

Само устройство можно сделать своими руками, используя простые и доступные материалы. Существует несколько хороших схем изготовления, которые помогут сэкономить на покупке заводских аналогов. Для примера, можно ознакомиться с ценами на самые популярные стробоскопы, которые есть в продаже:

  • Multitronics C2 — 900-1000 руб.
  • AstroL5 — 1300 руб.
  • Focus F1 — 1700 руб.
  • Focus F10 — 5600 руб.

Самодельные приборы делаются из фонариков, светодиодов или лазерной указки. При низкой себестоимости (около 500 рублей) прибор будет работать не менее надёжно и эффективно.

Инструкция по изготовлению прибора для установки зажигания

Простой способ

В сети есть много разных схем, практически все из них легко собираются и не требуют больших затрат на материалы. Рассмотрим одну из наиболее популярных схем создания стробоскопа в домашних условиях. Из деталей нам понадобится:

  • транзистор КТ315;
  • тиристор КУ112А, резисторы на 0,125 Вт;
  • любой фонарик на диодах (диодов должно 6 или больше);
  • конденсаторы C1;
  • низкочастотный диод V2;
  • реле с индексом RWH-SH-112D;
  • шнур питания длиною 1 метр;
  • специальные зажимы;
  • медный провод около 10 см.

Все детали можно приобрести на радиорынке или в специализированном магазине. В качестве корпуса для прибора можно использовать старый фонарик или вспышку от фотоаппарата.

Схема сборки автомобильного стробоскопа в корпусе от старого фонарика

  1. Высверливаем на задней стенке отверстие, куда пропускаем шнур питания.
  2. К концам проводов припаиваем зажимы разных цветов для обозначения «+» и «-».
  3. Датчик будет размещаться на левой или правой стенке. Делаем отверстие сбоку корпуса и прокладываем через него шнур к контакту Х1.
  4. К основной жиле провода припаиваем медную проволоку длиною 10 см. Он будет выполнять роль датчика стробоскопа.
  5. Изолируем соединения.

Чтобы собрать самодельный автомобильный стробоскоп, можно использовать недорогие радиодетали и медный провод

Использовать такое устройство можно не только для установки зажигания. Им можно проверить свечу, настроить работу регулятора.

Самодельная приблуда с использованием таймера

Стробоскоп на основе таймерных устройств имеет более сложную схему. Его главное преимущество в стабильных световых импульсах, которые не зависят от напряжения батареи. Прибор также может работать в режиме тахометра, для этого необходимо просто изменить положение регулятора.

Таймерные стробоскопы также можно использовать в качестве тахометра

Совет: В схеме лучше использовать диоды из серии КД521. Если вы не нашли таймера отечественного производства, можно взять зарубежный аналог NE555.

Схема изготовления прибора на светодиодах

В основе такого устройства лежит микросхема 155АГ1, она запускается импульсами с отрицательной полярностью. В схеме используются сопротивления R1, R2, R3, которые ограничивают амплитуду входного сигнала. Требуемая длительность импульсов устанавливается ёмкостью С4 и резистором R6. При стандартных настройках это 2 мс. В качестве источника питания будет использоваться аккумуляторная батарея автомобиля.

Светодиодные стробоскопы имеют высокую надежность и могут использоваться даже при ярком дневном освещении

Видео: как сделать стробоскоп своими руками

Как правильно настроить самоделку

Чтобы проверить устройство на практике и установить угол опережения зажигания, делаем следующее:

Штрафы за пересечение стоп-линии и превышение скорости больше не побеспокоят!

  1. Прогреваем двигатель и оставляем его работать на холостом ходу.
  2. Подключаем самодельный стробоскоп к источнику питания.
  3. Наматываем медный датчик на жилу первого цилиндра.
  4. Направляем источник света на специальную метку, которая нанесена на корпус.
  5. Находим неподвижную точку на шкиве маховика.
  6. Чтобы две точки сошлись, необходимо вращать корпус зажигания и после зафиксировать его в определённом положении.

На практике самодельные стробоскопы ничем не уступают заводским. Главное, правильно собрать схему и проверить работу устройства. Изготовленные стробоскопы в домашних условиях обойдутся совсем недорого и могут быть легко отремонтированы при необходимости.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector