Camgora.ru

Автомобильный журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Циркуляция охлаждающей жидкости

Циркуляция охлаждающей жидкости

Во избежание перегревания двигателя понадобиться система для его охлаждения. Она поддерживает стандартную температуру в нем. Большинство двигателей оснащены жидкостной охладительной системой. Элементы, из которых состоит схема циркуляции охлаждающей жидкости – большой и малый контур.

Из чего они состоят

Обычно в двигателях используется жидкостная охладительная система закрытого вида с вынужденной циркуляцией жидкости. Главные ее составляющие:

  1. Радиатор;
  2. Вентилятор;
  3. Термостат;
  4. Водяная рубашка блока цилиндров;
  5. Расширительный бачок;
  6. Водяной насос;
  7. Патрубок.

Каждый компонент имеет свое предназначение и выполняет конкретные функции. Это важно для оптимальной работы всех систем двигателя. Если одна из деталей неисправна, то это отобразится на схеме циркуляции охлаждающей жидкости. Поэтому все компоненты системы должны быть в исправном состоянии, позволяя двигателю работать эффективно и без перегрева.

Подробнее об составных элементах в охлаждении

Главная функция радиатора состоит в охлаждении циркулирующей жидкости. Поверхность устройства слагается из множества трубочек, что позволяет увеличить отдачу тепла. В радиаторе важную роль в охладительном процессе играет вентилятор. Он отвечает за подачу воздуха, тем самим уменьшая нагревание жидкости.

Термостат рассчитан на поддержку температуры двигателя в разумных мерах. Иначе, как только жидкость перегревается, термостат открывает путь с малого контура в большой. Тем самим, позволяя охладить ее, что регулирует температуру внутри двигателя. Водяная рубашка – сетка сообщающихся блоков цилиндров, что находятся в жидкости. Если ее не хватает, то этому поможет расширительный бачок. Он покрывает расход жидкости после нагревания или охлаждения.

Водяной насос содействует передвижению жидкости по рубашке и по всему двигателю. Патрубки и разнообразные трубки соединяют все элементы системы.

Как происходит циркуляция жидкости

Сначала, когда двигатель еще холодный, жидкость находится в маленьком контуре. Потом, когда начинается нагрев мотора и температура стает критичной, жидкость передвигается в большой контур чтобы лучше охладится.

Малый контур рассчитан на обеспечение допустимой температуры для работы двигателя. В него входит центробежный насос, через который охлаждающая жидкость циркулирует по системе. Проблема в том, что он помещает только небольшое количество жидкости, что приводит к быстрому ее нагреву.

Большой контур служит для более производительной циркуляции охлаждающей жидкости.

Если малый контур не справляется с охлаждением и происходит перегрев, клапан термостата перегоняет жидкость через большой контур к радиатору.

Какие используют жидкости

Для исправной работы системы важен вид используемой жидкости. Различают два вида – вода и антифриз. Выбирая воду как охлаждающий реагент, важно иметь представление, какую надо использовать. Она должна быть мягкой (дистиллированная, дождевая или снежная).

Современным заменителем воды стал антифриз – смесь этиленгликоля и дистиллированной воды. Эта жидкость имеет низкозамерзающие свойства. Это значит, что при низких температурах вода само собой замерзнет в радиаторе, а антифриз – нет.

Хотя существуют и недостатки. Используемый антифриз беспрепятственно может разлагаться в системе, что негативно влияет на поверхности деталей – возникновение коррозий и наслоений.

Неполадки системы охлаждения

Во время циркуляции охлаждающей жидкости тепло от стенок цилиндров и камер сгорания передается при помощи радиатора окружающей среде. Как только возникли проблемы в перекачке жидкости, сломалась деталь – нужно срочно предотвращать неполадки. Иначе перегрев неизбежен. Вот перечень возможных повреждений:

Вытекание жидкости: из радиатора или других элементов системы;

Неудовлетворительная работоспособность радиатора;

Низкий уровень действия вентилятора;

Неполноценный режим работы водяного насоса;

Все выше перечисленные неполадки можно починить или ремонтом конкретной детали или же ее полной заменой. Это же касается и первого пункта, так как утечка могла произойти только через неисправность одного или нескольких механизмов. Поэтому важно контролировать и время от времени проверять все устройства и устранять дефекты.

Важен ли механизм охлаждения

Охладительная система рассчитана на поддержание приемлемой тепловой нагрузки двигателя, регулирования отвода тепла от наиболее нагревающихся деталей. Это происходит вследствие контакта или трения с раскаленными газами.

Средняя температура нагрева двигателя составляет 800-900 градусов, но он может нагреться и до 2000. Если не осуществлять отвод тепла от мотора, то произойдет перегрев. Это грозит основательным ремонтом всего двигателя.

Схема циркуляции жидкости в системе может привести не только к охлаждению, но и к прогреву холодного двигателя. Это малая часть ее предназначения, но очень значительная.

Схема циркуляции охлаждающей жидкости. Схема системы охлаждения двигателя

В любом автомобиле используется двигатель внутреннего сгорания. Широкое распространение получили жидкостные системы охлаждения – только на старых «Запорожцах» и новых «Тата» используется обдув воздухом. Нужно отметить, что схема циркуляции охлаждающей жидкости на всех машинах практически похожа – присутствуют в конструкции одинаковые элементы, выполняют они идентичные функции.

Малый круг охлаждения

В схеме системы охлаждения двигателя внутреннего сгорания присутствует два контура – малый и большой. Чем-то она схожа с анатомией человека – движением крови в организме. Жидкость двигается по малому кругу тогда, когда необходимо произвести быстрый прогрев до рабочей температуры. Проблема в том, что мотор может нормально функционировать в узком диапазоне температур – около 90 градусов.

Нельзя ее повышать или понижать, так как это приведет к нарушениям – изменится угол опережения зажигания, топливная смесь будет сгорать несвоевременно. В контур включен радиатор отопителя салона – ведь нужно, чтобы внутри машины было тепло как можно раньше. Подача горячего антифриза перекрывается с помощью крана. Место его установки зависит от конкретного автомобиля – на перегородке между салоном и моторным отсеком, в области бардачка и т.д.

Большой контур охлаждения

В схему системы охлаждения двигателя при этом включается еще и основной радиатор. Он устанавливается в передней части автомобиля и предназначен для экстренного снижения температуры жидкости в двигателе. Если на автомобиле имеется кондиционер, то радиатор его устанавливается рядом. На автомобилях «Волга» и «Газель» применяется масляный радиатор, который также ставится в передней части автомобиля. На радиаторе обычно ставится вентилятор, который приводится в движение электромотором, ремнем или муфтой.

Жидкостный насос в системе

Это устройство входит в схему циркуляции охлаждающей жидкости «Газели» и любого другого автомобиля. Привод может осуществляться следующим образом:

  1. От ремня газораспределительного механизма.
  2. От ремня генератора.
  3. От отдельного ремня.

Конструкция состоит из таких элементов:

  1. Металлическая или пластиковая крыльчатка. От количества лопастей зависит эффективность работы насоса.
  2. Корпус – обычно выполняется из алюминия и его сплавов. Дело в том, что именно этот металл хорошо работает в агрессивных условиях, практически не действует на него коррозия.
  3. Шкив для установки ремня привода – зубчатый или клиновидный.
  4. Вал – стальной ротор, на одном конце которого находится крыльчатка (внутри), а снаружи шкив для установки приводного шкива.
  5. Бронзовая втулка или подшипник – смазка этих элементов осуществляется при помощи специальных присадок, которые имеются в антифризе.
  6. Сальник позволяет избежать вытекания жидкости из системы охлаждения.

Термостат и его особенности

Сложно сказать, какой именно элемент обеспечивает наиболее эффективную циркуляцию жидкости в системе охлаждения. С одной стороны, помпа создает давление и антифриз двигается по патрубкам с ее помощью.

Но с другой стороны, если бы не было термостата, движение происходило бы исключительно по малому кругу. Конструкция содержит такие элементы:

  1. Корпус из алюминия.
  2. Выходы для соединения с патрубками.
  3. Пластина биметаллического типа.
  4. Механический клапан с возвратной пружиной.

Принцип работы заключается в том, что при температуре ниже 85 градусов двигается жидкость только по малому контуру. При этом клапан внутри термостата находится в таком положении, при котором не попадает антифриз в большой контур.

Как только достигнет температура 85 градусов, начнет деформироваться биметаллическая пластина. Она воздействует на механический клапан и открывает доступ антифризу к основному радиатору. Как только снизится температура, клапан термостата вернется в исходное положение под действием возвратной пружины.

Расширительный бачок

В системе охлаждения двигателя внутреннего сгорания имеется расширительный бачок. Дело в том, что любая жидкость, в том числе и антифриз, при нагреве увеличивает объем. А при охлаждении объем уменьшается. Следовательно, необходим какой-то буфер, в котором будет храниться небольшое количество жидкости, чтобы в системе всегда ее было вдоволь. Именно с этой задачей и справляется расширительный бачок – туда выплескивается излишек во время нагрева.

Крышка расширительного бачка

Еще один незаменимый компонент системы – это пробка. Существует два типа конструкции – герметичная и негерметичная. В том случае, если на автомобиле применяется последняя, пробка расширительного бачка имеет только дренажное отверстие, через которое уравновешивается давление в системе.

Но если герметичная система применена, то в пробке имеется два клапана – впускной (забирает внутрь воздух из атмосферы, работает при давлении ниже 0,2 бар) и выпускной (срабатывает при давлении свыше 1,2 бар). Он выбрасывает из системы излишки воздуха.

Получается так, что в системе всегда давление больше, чем в атмосфере. Это позволяет немного повысить температуру кипения антифриза, что благоприятно сказывается на работе двигателя. Особенно это хорошо для движения по пробкам в городских условиях. Пример герметичной системы – автомобили ВАЗ-2108 и аналогичные. Негерметичной – модели классической серии ВАЗ.

Радиатор и вентилятор

Циркуляция охлаждающей жидкости проходит через основной радиатор, который установлен в передней части автомобиля. Такое место выбрано не случайно – при движении с большой скоростью соты радиатора обдуваются встречным потоком воздуха, что обеспечивает снижение температуры двигателя. На радиаторе устанавливается вентилятор. Большая часть таких устройств имеет электрический привод. На «Газелях», например, часто используются муфты, аналогичные тем, которые ставятся на компрессорах кондиционера.

Включение электрического вентилятора происходит с помощью датчика, установленного в нижней части радиатора. Может использоваться на инжекторных машинах сигнал от датчика температуры, который расположен на корпусе термостата или в блоке двигателя. Самая простая схема включения содержит в себе только один термовыключатель – у него нормально разомкнуты контакты. Как только в нижней части радиатора температура достигнет 92 градусов, контакты внутри переключателя замкнутся и произойдет подача напряжения на электродвигатель вентилятора.

Отопитель салона

Это самая важная часть, если смотреть с точки зрения водителя и пассажиров. От эффективности работы печки зависит комфорт при езде в зимнее время года. Отопитель входит в схему циркуляции охлаждающей жидкости и состоит из таких компонентов:

  1. Электродвигатель с крыльчаткой. Включается он по специальной схеме, в которой имеется постоянный резистор – он позволяет менять частоту вращения крыльчатки.
  2. Радиатор – это элемент, по которому проходит горячий антифриз.
  3. Кран – предназначен для открывания и закрывания подачи антифриза внутрь радиатора.
  4. Система воздуховодов позволяет направлять горячий воздух в нужном направлении.

Схема циркуляции охлаждающей жидкости по системе такая, что при закрывании всего одного входа в радиатор горячий антифриз никаким образом в него не попадет. Существуют автомобили, в которых кран печки отсутствует – внутри радиатора всегда находится горячий антифриз. А в летнее время просто закрываются воздуховоды и тепло в салон не подается.

Система охлаждения двигателя. Устройство системы охлаждения

Система охлаждения — это совокупность устройств, обеспечивающих принудительный отвод теплоты от нагревающихся деталей двигателя.

Потребность в системах охлаждения для современных двигателей вызвана тем, что естественное рассеивание теплоты наружными поверхностями двигателя и теплоотвод в циркулирующее моторное масло не обеспечивают оптимального температурного режима работы двигателя и некоторых его систем. Перегрев двигателя связан с ухудшением процесса наполнения цилиндров свежим зарядом, пригоранием масла, увеличением потерь на трение и даже заклиниванием поршня. На бензиновых двигателях возникает также опасность калильного зажигания (не от искры свечи, а вследствие высокой температуры камеры сгорания).

Система охлаждения должна обеспечивать автоматическое поддержание оптимального теплового режима двигателя на всех скоростных и нагрузочных режимах его работы при температуре окружающего воздуха -45…+45 °С, быстрый прогрев двигателя до рабочей температуры, минимальный расход мощности на приведение в действие агрегатов системы, малую массу и небольшие габаритные размеры, эксплуатационную надежность, определяемую сроком службы, простотой и удобством обслуживания и ремонта.

На современных колесных и гусеничных машинах применяются воздушная и жидкостная системы охлаждения.

При использовании воздушной системы охлаждения (рис. а) теплота от головки и блока цилиндров передается непосредственно обдувающему их воздуху. Через воздушную рубашку, образов ванную кожухом 3, охлаждающий воздух прогоняется с помощью вентилятора 2, приводимого в действие от коленчатого вала с использованием ременной передачи. Для улучшения теплоотвода цилиндры 5 и их головки снабжены ребрами 4. Интенсивность охлаждения регулируется специальными воздушными заслонками 6, управляемыми автоматически с помощью воздушных термостатов.

Большинство современных двигателей имеет жидкостную систему охлаждения (рис. б). В систему входят рубашки охлаждения 11 и 13 соответственно головки и блока цилиндров, радиатор 18, верхний 8 и нижний 16 соединительные патрубки со шлангами 7 и 15, жидкостный насос 14, распределительная труба 72, термостат 9, расширительный (компенсационный) бачок 10 и вентилятор 77. В рубашке охлаждения, радиаторе и патрубках находится охлаждающая жидкость (вода или антифриз — незамерзающая жидкость).

Рис. Схемы воздушной (а) и жидкостной (б) систем охлаждения двигателя:
1 — ременная передача; 2, 17 — вентиляторы; 3 — кожух; 4 — ребра цилиндра; 5 — цилиндр; 6 — воздушная заслонка; 7, 15 — шланги; 8, 16 — верхний и нижний соединительные патрубки; 9 — термостат; 10 — расширительный бачок; 77, — рубашки охлаждения головки и блока цилиндров; 12 — распределительная труба; 14 — жидкостный насос; 18 — радиатор

При работе двигателя приводимый в действие от коленчатого вала жидкостный насос создает в системе циркуляцию охлаждающей жидкости. По распределительной трубе 12 жидкость направляется сначала к наиболее нагретым деталям (цилиндры, головка блока), охлаждает их и по патрубку 8 поступает в радиатор 18. В радиаторе поток жидкости разветвляется по трубкам на тонкие струйки и охлаждается воздухом, продуваемым через радиатор. Охлажденная жидкость из нижнего бачка радиатора по патрубку 16 и шлангу 15 снова поступает в жидкостный насос. Поток воздуха через радиатор обычно создает вентилятор 77, приводимый в действие от коленчатого вала или специального электродвигателя. На некоторых гусеничных машинах для ,обеспечения потока воздуха применяется эжекционное устройство. Принцип действия этого устройства заключается в использовании энергии отработавших газов, вытекающих с большой скоростью из выпускной трубы и увлекающих за собой воздух.

Регулирует циркуляцию жидкости в радиаторе, поддерживая оптимальную температуру двигателя, термостат 9. Чем выше температура жидкости в рубашке, тем значительнее открыт клапан термостата и больше жидкости поступает в радиатор. При низкой температуре двигателя (например, непосредственно после его пуска) клапан термостата закрыт, и жидкость направляется не в радиатор (по большому кругу циркуляции), а сразу в приемную полость насоса (по малому кругу). Этим достигается быстрый прогрев двигателя после пуска. Интенсивность охлаждения регулируется также с помощью жалюзи, установленных на входе воздушного тракта или выходе из него. Чем больше степень закрытия жалюзи, тем меньше воздуха проходит через радиатор и хуже охлаждение жидкости.

В расширительном бачке 10, расположенном выше радиатора, имеется запас жидкости для компенсации ее убыли в контуре из-за испарения и утечек. В верхнюю полость расширительного бачка часто отводят образовавшийся в системе пар из верхнего коллектора радиатора и рубашки охлаждения.

Читать еще:  Рейтинг зимних колес липучка

Жидкостное охлаждение по сравнению с воздушным имеет следующие преимущества: более легкий пуск двигателя в условиях низкой температуры окружающего воздуха, более равномерное охлаждение двигателя, возможность применения блочных конструкций цилиндров, упрощение компоновки и возможность

изоляции воздушного тракта, меньший шум от двигателя и более низкие механические напряжения в его деталях. Вместе с тем жидкостная система охлаждения, имеет ряд недостатков, таких, как более сложная конструкция двигателя и системы, потребность в охлаждающей жидкости и более частой смене масла, опасность подтекания и замерзания жидкости, повышенный коррозионный износ, значительный расход топлива, более сложное обслуживание и ремонт, а также (в ряде случаев) повышенная чувствительность к изменению температуры окружающего воздуха.

Жидкостный насос 14 (см. рис. б) обеспечивает циркуляцию охлаждающей жидкости в системе. Обычно применяются центробежные крыльчатые насосы, но иногда используются шестеренные и поршневые насосы. Термостат 9 может быть одно- и двухклапанным с жидкостным термосиловым элементом или элементом, содержащим твердый наполнитель (церезин). В любом случае материал для термосилового элемента должен иметь очень большой коэффициент объемного расширения, чтобы при нагреве стержень клапана термостата мог перемещаться на довольно большое расстояние.

Практически, все двигатели наземных ТС с жидкостным охлаждением снабжены так называемыми закрытыми системами охлаждения, которые не имеют постоянной связи с атмосферой. При этом в системе образуется избыточное давление, что приводит к повышению температуры кипения жидкости (до 105… 110°С), увеличению эффективности охлаждения и уменьшению потерь, а также снижению вероятности появления в потоке жидкости пузырьков воздуха и пара.

Поддержание необходимого избыточного давления в системе и обеспечение доступа в нее атмосферного воздуха при разрежении осуществляется с помощью двойного паровоздушного клапана, который устанавливается в самой высокой точке жидкостной системы (обычно в крышке наливной горловины расширительного бачка или радиатора). Паровой клапан открывается, позволяя избытку пара уйти в атмосферу, если давление в системе превышает атмосферное на 20… 60 кПа. Воздушный клапан открывается, когда давление в системе снижается на 1… 4 кПа по сравнению с атмосферным (после остановки двигателя охлаждающая жидкость остывает, и ее объем уменьшается). Перепады давления, при которых открываются клапаны, обеспечиваются подбором параметров клапанных пружин.

В жидкостной вентиляционной системе охлаждения радиатор омывается потоком воздуха, создаваемым вентилятором. В зависимости от взаимного расположения радиатора и вентилятора могут применяться следующие типы вентиляторов: осевые, центробежные и комбинированные, создающие как осевой, так и радиальный потоки воздуха. Осевые вентиляторы устанавливают перед радиатором или за ним в специальном воздухоподводящем канале. К центробежному вентилятору воздух подводится по оси его вращения, а отводится — по радиусу (или наоборот). При нахождении радиатора перед вентилятором (в области всасывания) поток воздуха в радиаторе более равномерный, а температура воздуха не повышена из-за его перемешивания вентилятором. При нахождении радиатора за вентилятором (в области нагнетания) поток воздуха в радиаторе турбулентный, что повышает интенсивность охлаждения.

На тяжелых колесных и гусеничных ТС приведение вентилятора в действие обычно осуществляется от коленчатого вала двигателя. Могут использоваться карданные, ременные и зубчатые (цилиндрические и конические) передачи. В целях снижения динамических нагрузок на вентилятор в его приводе от коленчатого вала часто применяются разгружающие и демпфирующие устройства в виде торсионных валиков, резиновых, фрикционных и вязкостных муфт, а также гидромуфт. Для привода вентилятора относительно маломощных двигателей широко используются специальные электродвигатели, питание которых осуществляется от бортовой электросистемы. Это, как правило, уменьшает массу силовой установки и упрощает ее компоновку. Кроме того, применение электродвигателя для привода вентилятора позволяет регулировать частоту его вращения, а следовательно, и интенсивность охлаждения. При низкой температуре охлаждающей жидкости возможно автоматическое отключение вентилятора.

Радиаторы связывают друг с другом воздушный и жидкостный тракты системы охлаждения. Назначение радиаторов — передача теплоты от охлаждающей жидкости атмосферному воздуху. Основные части радиатора — входной и выходной коллекторы, а также сердцевина (охлаждающая решетка). Сердцевина изготавливается из меди, латуни или алюминиевых сплавов. По типу сердцевины различают следующие виды радиаторов: трубчатые, трубчато-пластинчатые, трубчато-ленточные, пластинчатые и сотовые.

В системах охлаждения колесных и гусеничных машин наибольшее распространение получили трубчато-пластинчатые и трубчато-ленточные радиаторы. Они жестки, прочны, технологичны в производстве и обладают высокой тепловой эффективностью. Трубки таких радиаторов имеют, как правило, плоскоовальное сечение. Трубчато-пластинчатые радиаторы могут также состоять из трубок круглого или овального сечения. Иногда трубки плоскоовального сечения располагают под углом 10… 15° к воздушному потоку, что способствует турбулизации (завихрению) воздуха и повышает теплоотдачу радиатора. Пластины (ленты) могут быть гладкими или гофрированными, с пирамидальными выступами или отогнутыми просечками. Гофрирование пластин, нанесение просечек и выступов увеличивают охлаждающую поверхность и обеспечивают турбулентное течение потока воздуха между трубками.

Рис. Решетки трубчато-пластинчатого (а) и трубчато-ленточного (б) радиаторов

Система охлаждения двигателя

Надежная и безаварийная работа ДВС (двигателя внутреннего сгорания) не может быть осуществлена без системы охлаждения. Ее основные принципы функционирования удобно представить в виде схемы системы охлаждения двигателя. Основное предназначение системы – отвод избыточного тепла от двигателя и предохранение его от перегрева. Дополнительная функция – обогрев автомобиля печкой отопителя салона. Устройство и принцип работы, отображенный на схеме, у разных типов автомобилей примерно одинаковы.

Схема, элементы системы охлаждения и их работа

Основные элементы, из которых состоит схема системы охлаждения двигателя, встречаются и схожи у разных типов моторов: инжекторных, дизельных и карбюраторных.

Общая схема жидкостной системы охлаждения двигателя

Жидкостное охлаждение мотора дает возможность в равной мере забирать тепло со всех узлов и деталей двигателя не зависимо от степени тепловой нагрузки. Двигатель с использованием водяного охлаждения создает меньше шума, чем двигатель с воздушным охлаждением, обладает большей скоростью прогрева при пуске.

Система охлаждения двигателя содержит следующие детали и элементы:

  • рубашка охлаждения (водяная рубашка);
  • радиатор;
  • вентилятор;
  • термостат;
  • жидкостный насос (помпа);
  • расширительный бачок;
  • соединительные патрубки и сливные краны;
  • отопитель салона.
  • Рубашкой охлаждения («водяной рубашкой») принято считать сообщающиеся между двойными стенками полости в тех местах, где наиболее нужен вывод избыточного тепла.
  • Радиатор. Предназначен для рассеивания тепла в окружающую атмосферу. Он конструктивно состоит из множества изогнутых трубочек с дополнительными ребрами для увеличения теплоотдачи.
  • Вентилятор, включающийся электромагнитной, реже гидравлической муфтой, при срабатывании температурного датчика охлаждающей жидкости усиливает набегающий на авто воздушный поток. Вентиляторы с “классическим” (постоянно включенным) ременным приводом встречаются в наши дни редко, в основном, на старых автомобилях.
  • Центробежный жидкостный насос (помпа) в системе охлаждения обеспечивает постоянную циркуляцию охлаждающей жидкости. Привод помпы чаще всего реализован с помощью ремня или шестерней. Двигатели с турбонаддувом и с непосредственным впрыском топлива, как правило, снабжены дополнительной помпой.
  • Термостат – главный узел, регулирующий потоки охлаждающей жидкости, устанавливается обычно между входным патрубком радиатора и «водяной рубашкой» двигателя, конструктивно выполнен в виде биметаллического или электронного клапана. Назначение термостата – поддержание заданного рабочего температурного диапазона охлаждающей жидкости при всех режимах работы двигателя.
  • Радиатор отопителя очень похож на радиатор системы охлаждения меньших размеров и расположен в салоне авто. Принципиальное отличие состоит в том, что радиатор отопителя передает тепло в салон, а радиатор системы охлаждения – в окружающую среду.

Принцип работы

Принцип работы жидкостного охлаждения двигателя состоит в следующем: цилиндры окружены «водяной рубашкой» из охлаждающей жидкости, отбирающей лишнее тепло и переносящей его к радиатору, откуда оно передается в атмосферу. Жидкость, непрерывно циркулируя, обеспечивает оптимальную температуру двигателя.

Принцип работы системы охлаждения двигателя

Охлаждающие жидкости – антифризы, тосол и вода – в процессе эксплуатации образуют осадок и накипи, нарушающие нормальную работу всей системы.

Вода не бывает химически чистой в принципе (за исключением дистиллированной) – в ней содержатся примеси, соли и всевозможные агрессивные соединения. При повышенной температуре они выпадают в осадок и образуют накипь.

В отличие от воды антифризы не создают накипи, но в процессе эксплуатации разлагаются, а продукты распада отрицательным образом сказываются на работе механизмов: на внутренних поверхностях металлических элементов появляется коррозионный налет и наслоения органических веществ.

Кроме этого, в систему охлаждения могут попадать различные посторонние загрязняющие субстанции: масло, моющие средства или пыль. Также могут попасть и специальные герметики, используемые для аварийной заделки повреждений в радиаторах.

Все эти загрязнения оседают на внутренних поверхностях узлов и агрегатов. Они характеризуются плохой теплопроводностью и забивают тонкие трубки и соты радиатора, нарушая эффективную работу системы охлаждения, что приводит к перегреву двигателя.

Видео о том, как устроено охлаждение мотора, принцип работы и неисправности

Ещё кое-что полезное для Вас:

Промывка

Промывка системы охлаждения двигателя — процесс, которым очень многие водители нередко пренебрегают, что рано или поздно может вызвать фатальные последствия.

Производить подобные работы рекомендуется одновременно с заменой охлаждающей жидкости. Принимая во внимание модель автомобиля и его марку, делать это необходимо от 1-го раза в календарный год до одного раза в три года.

Признаки того, что пора промывать

  1. Если стрелка указателя температуры находится не в середине, а стремится к красной зоне во время движения;
  2. В салоне холодно, печка отопления не дает достаточную температуру;
  3. Вентилятор радиатора включается слишком часто

Промыть систему охлаждения простой водой невозможно, поскольку в системе концентрируются загрязнения, которые не удаляются даже водой, нагретой до высоких температур.

Накипь удаляется с помощью кислоты, а жиры и органические соединения – исключительно щелочью, заливать же в радиатор одновременно оба состава нельзя, так как они согласно законам химии взаимонейтрализуются. Производители средств для промывки, пытаясь решить эту проблему, создали целый ряд средств, которые условно можно разделить на:

  • щелочные;
  • кислотные;
  • нейтральные;
  • двухкомпонентные.

Первые два слишком агрессивны и в чистом виде почти не используются, так как опасны для системы охлаждения и требуют нейтрализации после использования. Реже встречаются двухкомпонентные виды очистителей, содержащие оба раствора — щелочной и кислотный, которые заливаются поочередно.

Наибольшую востребованность имеют нейтральные очистители, не содержащие в своем составе сильных щелочей и кислот. Эти средства обладают разной степенью эффективности и могут использоваться как для профилактики, так и для капитальной промывки охлаждающей системы мотора от сильных загрязнений.

Промывка системы охлаждения

Промывка системы охлаждения

  1. Сливается антифриз, тосол или вода. Перед этим необходимо на пару минут завести двигатель.
  2. Залить в систему воду и очиститель.
  3. Включить двигатель на 5-30 минут (зависит от марки очистителя) и включить обогрев салона.
  4. По истечении обозначенного в инструкции времени двигатель нужно заглушить.
  5. Слить отработанный очиститель.
  6. Произвести промывку водой либо специальным составом.
  7. Залить свежую охлаждающую жидкость.

Работы по промывке системы охлаждения просты и доступны: их могут выполнять даже неопытные автовладельцы. Эта операция существенно продлевает моторесурс двигателя и поддерживает его эксплуатационные характеристики на высоком уровне.

Неисправности

Существует ряд наиболее распространенных неисправностей в системе охлаждения двигателя:

  1. Завоздушивание системы охлаждения двигателя: устранить воздушную пробку.
  2. Недостаточная производительность помпы: заменить помпу. Выбрать помпу с максимальной высотой крыльчатки.
  3. Неисправен термостат: устраняется заменой на новое устройство.
  4. Низкая производительность радиатора охлаждающей жидкости: промывка старого или замена стандартного на модель с более высокими теплоотводящими качествами.
  5. Недостаточный уровень производительности основного вентилятора: установка нового вентилятора с более высокой производительностью.

Видео — определение неисправностей системы охлаждения в автосервисе

Регулярный уход, своевременная замена охлаждающей жидкости гарантирует длительную эксплуатацию автомобиля в целом.

whatisvehicle

Как это работает?

Часть 1 — Жидкостная система охлаждения

[Жидкостная система охлаждения]

Вспомним ещё раз немного про данную систему охлаждения.

В жидкостной системе охлаждения используются специальные охлаждающие жидкости — антифризы различных марок, имеющие температуру загустевания — 40 °С и ниже. Антифризы содержат антикоррозионные и антивспенивающие присадки, исключающие образование накипи. Они очень ядовиты и требуют осторожного обращения. По сравнению с водой антифризы имеют меньшую теплоемкость и поэтому отводят теплоту от стенок цилиндров двигателя менее интенсивно.

Так, при охлаждении антифризом температура стенок цилиндров на 15…20°С выше, чем при охлаждении водой. Это ускоряет прогрев двигателя и уменьшает изнашивание цилиндров, но в летнее время может привести к перегреву двигателя.

Оптимальным температурным режимом двигателя при жидкостной системе охлаждения считается такой, при котором температура охлаждающей жидкости в двигателе составляет 80 …100 °С на всех режимах работы двигателя.

В двигателях автомобилей применяется закрытая (герметичная) жидкостная система охлаждения с принудительной циркуляцией охлаждающей жидкости.

Внутренняя полость закрытой системы охлаждения не имеет постоянной связи с окружающей средой, а связь осуществляется через специальные клапаны (при определенном давлении или вакууме), находящиеся в пробках радиатора или расширительного бачка системы. Охлаждающая жидкость в такой системе закипает при 110… 120 °С. Принудительная циркуляция охлаждающей жидкости в системе обеспечивается жидкостным насосом.

Система охлаждения двигателя состоит из:

  • рубашка охлаждения головки и блока цилиндров;
  • радиатор;
  • насос;
  • термостат;
  • вентилятор;
  • расширительный бачок;
  • соединительные трубопроводы и сливные краники.

Кроме того, в систему охлаждения входит отопитель салона кузова автомобиля.

Принцип работы системы охлаждения

Предлагаю сначала рассмотреть принципиальную схему системы охлаждения.

1 — отопитель; 2 — двигатель; 3 — термостат; 4 — насос; 5 — радиатор; 6 — пробка; 7 — вентилятор; 8 — расширительный бачок;
А — малый круг циркуляции (термостат закрыт);
А+Б — большой круг циркуляции (термостат открыт)

Циркуляция жидкости в системе охлаждения осуществляют по двум кругам:

1. Малый круг — жидкость циркулирует при пуске холодного двигателя, обеспечивая его быстрый прогрев.

2.Большой круг — движение циркулирует при прогретом двигателе.

Если говорить проще, то малый круг это циркуляция охлаждающей жидкости БЕЗ радиатора, а большой круг — циркуляция охлаждающей жидкости ЧЕРЕЗ радиатор.

Устройство системы охлаждения различаются по своему устройству в зависимости от модели автомобиля, однако, принцип действия един.

Принцип работы данной системы можно увидеть на следующих видео:

Предлагаю разобрать устройство системы по последовательности работы. Итак, начало работы системы охлаждения происходит при запуске сердца данной системы — жидкостного насоса.

1. Жидкостной насос(water pump)

Жидкостный насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. На двигателях автомобилей применяют лопастные насосы центробежного типа.

Искать наш жидкостной насос или же водяную помпу следует на передней части двигателя(передняя часть эта та, которая ближе к радиатору и там где расположен ремень/цепь).

Жидкостной насос соединён ремнём с коленчатым валом и генератором. Поэтому, чтобы найти наш насос достаточно найти коленчатый вал и найти генератор. Про генератор мы поговорим позже, но пока лишь покажу, что нужно искать. Генератор выглядит как цилиндр, прикрепленный к корпусу двигателя:

1 — генератор; 2 — жидкостной насос; 3 — коленчатый вал

Итак, с расположением разобрались. Теперь давайте рассмотрим его устройство. Напомним, что устройство всей системы и её деталей различно, но принцип работы этой системы одинаков.

1 — Крышка насоса; 2 — Упорное уплотнительное кольцо сальника.
3 — Сальник; 4 — Подшипник валика насоса.
5 — Ступица шкива вентилятора; 6 — Стопорный винт.
7 — Валик насоса; 8 — Корпус насоса; 9 — Крыльчатка насоса.
10 — Приемный патрубок.

Читать еще:  Антиблокировочная тормозная система автомобиля

Работа насоса заключается в следующем: привод насоса осуществляется от коленчатого вала через ремень. Ремень крутит шкив насоса, вращая ступицу шкива насоса(5). Тот в свою очередь приводит во вращение вал насоса(7), на конце которого находится крыльчатка(9). Охлаждающая жидкость поступает в корпус насоса(8) через приёмный патрубок(10), а крыльчатка перемещает её в рубашку охлаждения(через окошко в корпусе, видно на рисунке, направление движение из насоса показано стрелкой).

Таким образом, насос имеет привод от коленвала, жидкость поступает в него через приёмный патрубок и уходит в рубашку охлаждения.

Работу жидкостного насоса можно посмотреть в этом видео(1:48):

Давайте теперь посмотрим, а откуда поступает жидкость в насос? А жидкость поступает через очень важную деталь — термостат. Именно термостат ответствен за температурный режим.

2. Термостат(thermostat)

Термостат автоматически регулирует температуру воды для ускорения прогрева двигателя после пуска. Именно работа термостата определяет, по каком кругу(большому или малому) пойдёт охлаждающая жидкость.

Выглядит сей агрегат примерно вот так в реальности:

Принцип работы термостата очень прост: термостат имеет чувствительный элемент, внутри которого находится твёрдый наполнитель. При определённой температуре он начинает плавиться и открывает основной клапан, а дополнительный наоборот, закрывается.

1, 6, 11 – патрубки; 2, 8 – клапаны; 3, 7 – пружины; 4 – баллон; 5 – диафрагма; 9 – шток; 10 – наполнитель

Работа термостата проста, её можно посмотреть здесь:

Термостат имеет два входных патрубка 1 и 11, выходной патрубок 6, два клапана (основной 8, дополнительный 2) и чувствительный элемент. Термостат установлен перед входом в насос охлаждающей жидкости и соединяется с ним через патрубок 6.

Соединение:

Через патрубок 1 соединяется с рубашкой охлаждения двигателя,

Через патрубок 11 — с нижним отводящим бачком радиатора.

Чувствительный элемент термостата состоит из баллона 4, резиновой диафрагмы 5 и штока 9. Внутри баллона между его стенкой и резиновой диафрагмой находится твердый наполнитель 10 (мелкокристаллический воск), обладающий высоким коэффициентом объемного расширения.

Основной клапан 8 термостата с пружиной 7 начинает открываться при температуре охлаждающей жидкости более 80 °С. При температуре менее 80 °С основной клапан закрывает выход жидкости из радиатора, и она поступает из двигателя в насос, проходя через открытый дополнительный клапан 2 термостата с пружиной 3.

При возрастании температуры охлаждающей жидкости более 80 °С в чувствительном элементе плавится твердый наполнитель, и объем его увеличивается. Вследствие этого шток 9 выходит из баллона 4, и баллон перемещается вверх. Дополнительный клапан 2 при этом начинает закрываться и при температуре более 94 °С перекрывает проход охлаждающей жидкости от двигателя к насосу. Основной клапан 8 в этом случае открывается полностью, и охлаждающая жидкость циркулирует через радиатор.

Работа клапана понятно и наглядно показана на рисунке ниже:

А — малый круг, основной клапан закрыт, перепускной — закрыт. Б — большому круг, основной клапан открыт, перепускной — закрыт.

1 — Входной патрубок (от радиатора); 2 — Основной клапан;
3 — Корпус термостата; 4 — Перепускной клапан.
5 — Патрубок перепускного шланга.
6 — Патрубок подачи охлаждающей жидкости в насос.
7 — Крышка термостата; 8 — Поршень.

Итак, мы разобрались с малым кругом. Разобрали устройство насоса и термостата, соединённых между собой. А теперь давайте перейдём к большому кругу и ключевому элементу большого круга — радиатору.

3. Радиатор(radiator/cooler)

Радиатор обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. На легковых автомобилях применяются трубчато-пластинчатые радиаторы.

Итак, различают 2 вида радиаторов: разборный и не разборный.

Снизу представлено их описание:

Хочу ещё раз сказать про расширительный бачок (expansion Tank)

Рядом с радиатором или же на нём устанавливается вентилятор. Давайте теперь перейдём к устройству этого самого вентилятора.

4. Вентилятор(fan)

Вентилятор увеличивает скорость и количество воздуха, проходящего через радиатор. На двигателях автомобилей устанавливают четырех- и шестилопастные вентиляторы.

Если применяется механический вентилятор,

Вентилятор включает шесть или четыре лопасти(3), приклепанные к крестовине(2). Последняя привернута к шкиву жидкостного насоса(1), который приводится в движение коленчатым валом с помощью ременной передачи(5).

Как мы уже ранее говорили, в зацепление входит так же генератор(4).

Если применяется электровентилятор,

то вентилятор состоит из электродвигателя 6 и вентилятора 5. Вентилятор — четырехлопастный, крепится на валу электродвигателя. Лопасти на ступице вентилятора расположены неравномерно и под углом к плоскости его вращения. Это увеличивает подачу вентилятора и уменьшает шумность его работы. Для более эффективной работы электровентилятор размещен в кожухе 7, который прикреплен к радиатору. Электровентилятор крепится к кожуху на трех резиновых втулках. Включается и выключается электровентилятор автоматически датчиком 3 в зависимости от температуры охлаждающей жидкости.

Итак, давайте подведём итог. Не будем голословными и подведём итог по какой-нибудь картинке. Не стоит делать акцент на конкретное устройство, но вот принцип работы надо понять, ибо он одинаков во всех системах, как бы не различалось их устройство.


При пуске двигателя начинает вращаться коленчатый вал. Через ременную передачу(напомню, что на ней же находится и генератор) передаётся вращение на шкив жидкостного насоса(13). Тот приводит во вращение вал с крыльчаткой внутри корпуса жидкостного насоса(16). Охлаждающая жидкость поступает в рубашку охлаждения двигателя(7). Далее через выпускной патрубок(4) охлаждающая жидкость возвращается в жидкостной насос через термостат(18). В это время в термостате открыт перепускной клапан, но закрыт основной. Поэтому, жидкость циркулирует через рубашку двигателя без участия радиатора(9). Это обеспечивает быстрый прогрев двигателя. После того как охлаждающая жидкость нагревается, открывается основной клапан термостата и закрывается перепускной клапан. Теперь жидкость не может течь через перепускной патрубок термостата(3) и вынуждена течь через подводящий патрубок(5) в радиатор(9). Там жидкость охлаждается и поступает обратно в жидкостной насос(16) через термостат(18).

Стоит заметить, что некоторая часть охлаждающей жидкости поступает из рубашки охлаждения двигателя в отопитель через патрубок 2 и возвращается из отопителя через патрубок 1. Но об этом мы поговорим в следующей главе.

Надеюсь, теперь система станет понятна для Вас. Прочитав данную статью, я надеюсь, можно будет сориентироваться в другой системе охлаждения, поняв принцип работы этой.

Предлагаю ознакомиться так же со следующей статьёй:

[ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ]

Так как мы затронули систему отопления, следующая моя статья будет об этой системе.

Система охлаждения двигателя

Обучающая статья про автомобильную систему охлаждения двигателя. В статье представлена схема системы охлаждения двигателя ВАЗ, а также описан принцип её работы и дано видео.

Система охлаждения двигателей стандартного типа охлаждает его нагреваемые детали. В системах современных автомобилей она выполняет и другие функции:

    охлаждает масло системы смазки;

охлаждает воздух, циркулирующий в системе турбонаддува;

охлаждает отработавшие газы в системе их рециркуляции;

охлаждает рабочую жидкость автоматической коробки передач;

  • нагревает воздух, циркулирующий в системах вентиляции, отопления и кондиционирования.
  • Есть несколько способов охлаждения двигателя, от применения которого зависит тип используемой системы охлаждения. Различают жидкостную, воздушную и комбинированную системы. Жидкостная — отводит от двигателя тепло при помощи потока жидкости, а воздушная — потока воздуха. В комбинированной системе оба этих способа объединены.

    Чаще других в автомобилях используется жидкостная система охлаждения. Она равномерно и достаточно эффективно охлаждает детали двигателя и работает с меньшим шумом, чем воздушная. Основываясь на популярности жидкостной системы, именно на её примере и будет рассмотрен принцип действия систем охлаждения двигателя автомобиля в целом.

    Схема системы охлаждения двигателя

    Для бензинового и дизельного двигателей применяются схожие конструкции систем охлаждения. Их стандартный набор элементов следующий:

      обычный, масляный радиатор и радиатор охлаждающей жидкости;

    рубашка охлаждения двигателя;

  • система управления.
  • Рассмотрим каждый из этих элементов по отдельности:

    1. Радиаторы.

      В обычном радиаторе нагретая жидкость охлаждается встречным потоком воздуха. Чтобы повысить его эффективность, в конструкции используется специальное устройство трубчатого вида.

    Масляный радиатор предназначен для уменьшения температуры масла системы смазки.

  • Для охлаждения отработавших газов системы их рециркуляции задействуют третий вид радиаторов. Он позволяет охлаждать топливно-воздушную смесь при её сгорании, благодаря чему меньше образовывается оксидов азота. Дополнительный радиатор снабжен отдельным насосом, который также включен в систему охлаждения.
  • 2. Вентилятор радиатора. Для повышения эффективности работы радиатора в нём используется вентилятор, который может иметь различный приводной механизм:

    механический (соединен на постоянной основе с коленчатым валом мотора автомобиля);

  • электрический (работает от тока аккумулятора).
  • Наиболее распространен электрический вид вентиляторов, управление которым осуществляется в достаточно широких пределах.

    3. Центробежный насос. При помощи насоса в системе охлаждения обеспечивается циркуляция её жидкости. Центробежный насос может быть оснащен различным типом привода, например, ременным или же шестеренным. У двигателей с турбонаддувом помимо основного может быть использован дополнительный центробежный насос для более эффективного охлаждения турбокомпрессора и наддувочного воздуха. Для управления работой насосов используется блок управления двигателем.

    4. Термостат. При помощи термостата осуществляется регулировка количества жидкости, попадающей в радиатор. Устанавливается термостат в патрубке, ведущем к радиатору от рубашки охлаждения мотора. Благодаря термостату можно управлять температурным режимом системы охлаждения.В автомобилях с мощным двигателем может быть использован термостат несколько иного вида — с электрическим подогревом. Он способен обеспечить регулирование температурного режима жидкости системы в двухступенчатом диапазоне при трех рабочих положениях.

    В открытом состоянии такой термостат находится во время максимальной работы двигателя. При этом температура охлаждающей жидкости, проходящей через радиатор, понижается до 90 °С, благодаря чему снижается вероятность детонации двигателя. В остальных двух рабочих положениях термостата (открытое и полуоткрытое) температура жидкости будет поддерживаться на отметке 105 °С.

    5. Теплообменник отопителя. Поступающий в теплообменник воздух нагревается для последующего его использования в отопительной системе автомобиля. Для повышения эффективности работы теплообменника его размещают непосредственно на выходе охлаждающей жидкости, прошедшей через двигатель и имеющей высокую температуру.

    6. Расширительный бачок. Вследствие изменения температуры охлаждающей жидкости меняется и её объем. Чтобы компенсировать его, в систему охлаждения встраивается расширительный бачок, поддерживающий объем жидкости в системе на одном уровне.

    7. Рубашка охлаждения двигателя. В конструкции такая рубашка представляет собой каналы для жидкости, проходящие через головку блока двигателя и блок цилиндров.

    8. Система управления. В качестве элементов управления системы охлаждения двигателя в ней могут быть представлены следующие устройства:

      Температурный датчик циркулирующей жидкости. Датчик температуры преобразует величину температуры в соответствующую величину электрического сигнала, который подается на блок управления. В тех случаях, когда система охлаждения используется для охлаждения отработавших газов или в других задачах, в ней может быть установлен ещё один температурный датчик, устанавливаемый на выходе радиатора.

    Блок управления на электронной основе. Получая от датчика температуры электрические сигналы, блок управления автоматически реагирует и выполняет соответствующие воздействия на другие исполнительные элементы системы. Обычно, блок управления имеет программное обеспечение, выполняющее всю функции по автоматизации процесса обработки сигналов и настройки работы системы охлаждения.

  • Также, в системе управления могут быть задействованы следующие устройства и элементы: реле охлаждения мотора после его остановки, реле вспомогательного насоса, термостатный нагреватель, управляющий блок радиаторного вентилятора.
  • Принцип работы системы охлаждения двигателя в действии

    Налаженная работа охлаждения обусловлена наличием системы управления. В автомобилях с современными двигателями её действия основаны на математической модели, в которой учтены различные показатели параметров системы:

      температура смазочного масла;

    температура жидкости, используемой для охлаждения двигателя;

    температура наружной среды;

  • другие важные показатели, влияющие на работу системы.
  • Система управления, оценивая различные параметры и их влияние на работу системы, компенсирует их влияние регулированием условий работы управляемых элементов.

    С помощью центробежного насоса осуществляется принудительная циркуляция охлаждающей жидкости в системе. Проходя через рубашку охлаждения жидкость нагревается, а попав в радиатор — остывает. Нагревая жидкость, сами детали двигателя остывают. В рубашке охлаждения жидкость может циркулировать как в продольном (по линии цилиндров), так и в поперечном направлении (от одного коллектора к другому).

    От температуры охлаждающей жидкости зависит круг ее циркуляции. Во время запуска двигателя он сам и охлаждающая жидкость холодные, и чтобы ускорить его нагрев жидкость направляется на малый круг циркуляции, минуя радиатор. В дальнейшем, при нагревании двигателя, термостат нагревается и меняет свое рабочее положение на полуоткрытое. Вследствие этого охлаждающая жидкость начинает течь через радиатор.

    Если встречного потока воздуха радиатора недостаточно для понижения температуры жидкости до требуемого значения, включается вентилятор, образующий дополнительный поток воздуха. Охлажденная жидкость вновь попадает в рубашку охлаждения и цикл повторяется.

    Если в автомобиле используется турбонаддув, то он может быть оснащен двухконтурной системой охлаждения. Первый её контур охлаждает сам двигатель, а второй — наддувочный поток воздуха.

    Смотрите познавательное видео про принцип работы системы охлаждения двигателя:

    Почему нет циркуляции антифриза в системе охлаждения

    Большинство водителей рано или поздно сталкиваются с неполадками в работе автомобиля. Хорошо, если у вас никогда не возникало вопросов, почему двигатель перегревается или пенится антифриз. Но иногда система охлаждения дает сбой, из-за чего нет циркуляции в двигателе, что и вызывает такой неприятный результат. Для того чтобы правильно исправить последствия этой проблемы, нужно знать, из-за чего она возникает и каким образом должен осуществляться ремонт.

    Содержание

    Признаки плохой циркуляции

    Для того чтобы понять, что охладительная система не в порядке, нужно обратить внимание на ее работу. Плохая циркуляция антифриза в расширительном бачке может дать о себе знать разными способами. Важно заметить эти признаки на первых порах, чтобы вовремя исправить неполадку. В любом случае при нарушении работы системы охлаждения вместе с этим ухудшится теплообмен.

    Поэтому характерными внешними проявлениями могут стать:

    Закипание антифриза в бачке. Этот признак может проявляться на фоне сломанного вентилятора или недостаточного уровня ОЖ, но, если жидкости налито достаточно, а она все равно кипит, это может быть связано с тем, что антифриз просто «не гоняет», поэтому он застаивается и нагревается вместе с двигателем.

    Двигатель греется. Если радиатор стабильно горячий, патрубки тоже, но из них ничего не течет или система охлаждения не включается, это может свидетельствовать о том, что антифриз не циркулирует. Иногда этот симптом может совмещаться с другими.

    Не течет охладительная жидкость. Даже при включенной печке или нагретом двигателе может случиться так, что радиаторы продолжают оставаться холодными, включаются вентиляторы, но из патрубков еле капает антифриз или они вообще остаются пустыми.

    Любая ситуация, которая не вписывается в привычную картину теплообмена в машине, может свидетельствовать о том, что антифриз не циркулирует. Лучше разобраться с этим до того, как одна проблема приведет к еще более серьезной поломке.

    Почему нет циркуляции в двигателе

    Если нарушается циркуляция в двигателе, возникает вопрос, почему это происходит. Есть несколько основных вариантов, которые вызывают застой антифриза в расширительном бачке:

    Читать еще:  Окисляется клемма аккумулятора минус

    Прохудилась или сломалась помпа. Для перекачки антифриза по охлаждающей системе двигателя используется специальный водяной насос или помпа. Со временем может растянуться натяжение ременной передачи этой детали. Из-за этого она начнет работать хуже, ОЖ будет перекачиваться с трудом, что приведет к нарушению теплообмена.

    Система забилась. Если долго не обслуживать и не проверять расширительный бачок и патрубки на предмет коррозии и осадков, на них может осесть накипь. Со временем это забьет всю систему охлаждения, и она перестанет правильно работать.

    Сломался термостат. Если он не распознает изменение температуры и не регулирует поступление антифриза в двигатель, проблема может быть вовсе не в системе охлаждения.

    Пробита прокладка ГБЦ. Если головка блока цилиндров повреждена или смещена, это однозначно послужит причиной смешения масла с антифризом и нарушения его циркуляции в системе охлаждения и двигателе.

    Расслоение шлангов. Если в порядке термостат и сама охладительная система, то есть антифриз не вытекает и не смешивается с маслом или газами, стоит поискать причину плохой циркуляции в трубках, вводящих антифриз в двигатель и одной самой большой, которая отводит его обратно в бачок. Может оказаться, что охлаждающая жидкость течет по вводящим трубкам вяло или едва капает, а также совсем не теплеет даже при разогретом двигателе. Это значит, что проблема в патрубках.

    Пробка в расширительном бачке. Воздух может застаиваться в системе охлаждения и мешать прохождению антифриза по трубкам. Это также может поспособствовать плохой циркуляции ОЖ.

    Какие могут быть последствия

    Если ОЖ не будет равномерно поступать в трубки и охлаждать двигатель, это повлечет за собой серьезные проблемы. Машина будет быстро и сильно греться, даже за короткое время достигая высокой температуры двигателя. Кроме того, неисправность комплектующих в системе охлаждения, например, сломанная помпа, в дальнейшем может привести к разрыву шлангов. Также может нарушиться работа печки, например, она будет дуть горячим воздухом, независимо от температуры двигателя и состояния термостата. В целом вся отлаженная работа автомобиля будет разбалансирована. Вместо четкой схемы начнется сбой в функционировании системы охлаждения и двигателя. Поэтому ни в коем случае нельзя долго тянуть с решением проблемы циркуляции антифриза.

    Что нужно сделать

    Так как причины, которые влекут за собой нарушение в работе системы охлаждения, слишком различны и сложны, лучше не решать их самостоятельно. Если вы заметили, что антифриз не циркулирует, лучше отогнать машину в сервис, где ее осмотрит мастер. Иногда это может потребовать замены нескольких комплектующих деталей. В любом случае после исправления неполадок стоит заменить антифриз в расширительном бачке и внимательно следить за работой двигателя, чтобы не допустить повторения этой ситуации.

    Вам также может быть интересно

    Почему потемнел и помутнел антифриз в расширительном бачке

    Понимание, почему смесь может потемнеть, поможет вовремя выявить и исправить проблему. Это явление может говорить о смешивании хладагента с другими функциональными жидкостями, а это всегда следствие поломок. Но даже если антифриз просто потемнел, без других симптомов, он однозначно нуждается в замене.

    Почему закипает, бурлит и булькает антифриз в расширительном бачке. Последствия закипания.

    В норме антифриз прекрасно функционирует и не теряет своих свойств вне зависимости от температуры на улице. Если же антифриз закипает или его уровень резко снижается, это свидетельствует о проблемах либо в самой системе, либо в составе жидкости. Наши специалисты расскажут о причинах и последствиях этого явления.

    Почему свернулся антифриз: причины и что делать

    В некоторых случаях автомобилист может обнаружить под крышкой вспененное и неоднородное нечто ржавого цвета. Бывалые водители в таком случае констатируют: «Антифриз свернулся». Почему так происходит и как с этим бороться? Именно это обсудим с экспертами в статье на нашем сайте.

    Система охлаждения

    Система охлаждения двигателя служит для охлаждения нагревающихся деталей и поддержания нормального температурного режима работы двигателя.

    С помощью системы охлаждения для всего диапазона нагрузочных и скоростных режимов работы двигателя поддерживается его стабильное тепловое состояние, при котором достигаются оптимальные экономические и энергетические показатели работы двигателя.

    Нарушение правильного отвода тепла вызывает ухудшение смазки трущихся поверхностей, выгорания масла и перегрев деталей двигателя. Последнее приводит к резкому падению прочности материала деталей и даже их обгоранию (например, выпускных клапанов). При сильном перегреве двигателя нормальные зазоры между его деталями нарушаются, что, обычно, приводит к повышенному износу, заеданию и даже поломке.

    Перегрев двигателя вреден еще и потому, что приводит к уменьшению коэффициента наполнения, детонации и самовоспламенению рабочей смеси.

    Чрезмерное охлаждение двигателя также нежелательно, т.к. оно влечет за собой конденсацию частиц топлива на стенке камеры сгорания, ухудшению смесеобразования, воспламеняемости рабочей смеси, уменьшению скорости ее сгорания, и, как следствие, уменьшению мощности и экономичности двигателя.

    В автотракторных двигателях применяют две системы охлаждения: жидкостную и воздушную.

    С помощью системы охлаждения для всего рабочего диапазона нагрузочных и скоростных режимов двигателя поддерживают его стабильное тепловое состояние и обеспечивают необходимую температуру, при которой достигаются оптимальные экономические и энергетические показатели.

    Подавляющее большинство автотракторных двигателей имеют жидкостное охлаждение. Это обусловлено большей интенсивностью охлаждения деталей жидкостью, чем воздухом, и гибкостью управления работой такой системы. Воздушное охлаждение получило распространение в дизелях, у которых рабочий процесс улучшается при более высоких температурах поверхности камеры сгорания. В бензиновых двигателях воздушное охлаждение применяют в моделях относительно малой мощности.

    В условиях эксплуатации нагрузка и частота вращения двигателя меняется в широких пределах. Поэтому в системах охлаждения предусматривают специальные устройства, автоматически поддерживающие на необходимом уровне температуру охлаждающей жидкости или стенок головки цилиндра (при воздушном охлаждении).

    Чтобы эффективно управлять тепловым состоянием двигателя применяют термостаты (рис.5), уменьшающие (перераспределяющие) циркуляцию жидкости в системе, а также устройства в приводе вентилятора, изменяющие его подачу.

    Жидкостная система охлаждения.

    В большинстве случаев на современных автотракторных двигателях применяют систему закрытого типа с принудительной циркуляцией жидкости, поступающей в радиатор. Сообщение внутренней полости системы с атмосферой осуществляется через специальные клапаны, установленные в верхней части радиатора (рис.1). При чрезмерном повышении давления в системе паровой клапан открывается и выпускает образовавшиеся пары. При остывании двигателя после остановки объем жидкости понижается, и в системе возникает разрежение. В этом случае открывается воздушный клапан 1, соединяющий систему с атмосферой. Блок паро-воздушных клапанов отрегулирован следующим образом: паровой клапан 2 должен открываться при избыточном давлении не ниже 0,05 МПа, а воздушный клапан – при разрежении не выше 0,08 МПа.

    Рис.1. Паро-воздушный клапан:

    1 – воздушный клапан; 2 – паровой клапан; 3 – пароотводная трубка.

    В качестве охлаждающей жидкости используют пресную воду. Существенными недостатками воды являются высокая температура замерзания, и способность растворять соли, которые при нагревании жидкости в системе охлаждения образуют накипи.

    В последнее время получили распространение все сезонные низкозамерзающие жидкости (антифризы) на основе этиленгликоля или спиртоглицериновых смесей. Эти жидкости имеют большой коэффициент объемного расширения, поэтому системы охлаждения оборудуются расширительным бачком.

    Большая вязкость и меньшая удельная теплоемкость антифризов (таблица 1) обуславливают некоторое снижение эффективности теплоотдачи на теплообменных поверхностях системы охлаждения и возрастание температуры деталей двигателя. При одном и том же уровне температур теплоотдача в радиаторе с антифризом на 8…12% ниже, чем с водой.

    Таблица 1.

    Физические свойства охлаждающих жидкостей.

    Система охлаждения автомобильного двигателя: устройство и принцип действия

    Двигатели внутреннего сгорания (ДВС) и их составные части подвергаются сильному нагреву во время эксплуатации различных транспортных средств. При этом, как перегрев, так и переохлаждение мотора способны спровоцировать выход его из строя. В связи с этим одной из важнейших задач разработчиков силовых агрегатов является обеспечение оптимального теплового режима их работы. Грамотно организованная система охлаждения двигателя способствует получению наилучших эксплуатационных параметров ДВС, к которым относятся:

    1. Максимальная мощность.
    2. Минимальный расход горючего.
    3. Увеличенный срок эксплуатации.

    Влияние температурных параметров на работу мотора

    За один рабочий цикл температура в цилиндрах ДВС изменяется от 80…120 градусов Цельсия во время впуска горючей смеси до 2000…2200 градусов Цельсия в процессе ее сгорания. При этом силовой агрегат достаточно сильно нагревается.

    Принято считать, что двигатель нормально функционирует, если интервал изменения температуры в районе блока цилиндров находится в пределах 90 – 110 градусов Цельсия.

    Если мотор во время работы охлаждается недостаточно интенсивно, то его детали сильно нагреваются и изменяются в размерах. Значительно уменьшается (из-за выгорания) и объем моторного масла, залитого в картер. В итоге увеличивается трение между взаимодействующими деталями, что приводит к их быстрому износу или даже заклиниванию.

    Однако и переохлаждение ДВС отрицательно сказывается на его работе. На стенках цилиндров холодного двигателя происходит конденсация паров топлива, которые, смывая слой смазки, разжижают моторное масло, находящееся в картере.

    Для исключения негативных последствий, связанных с нарушением теплового режима, системы охлаждения проектируются так, чтобы исключить перегрев и переохлаждение мотора в процессе эксплуатации.

    В результате химические свойства последнего ухудшаются, что способствует:

    • увеличенному расходу моторного масла;
    • интенсивному износу трущихся поверхностей;
    • падению мощности силового агрегата;
    • увеличению расхода горючего.

    Классификация

    При работе мотора необходимо обеспечить отвод от 25 до 35% выделяемого тепла. Для его эффективного поглощения (отвода) чаще всего используют воду, воздух или специальную жидкость (тосол, антифриз). Материал теплоносителя определяет способ охлаждения силового агрегата.

    1. Принудительного воздушного охлаждения.
    2. Жидкостного охлаждения с замкнутым циклом.

    Жидкостная система охлаждения

    В настоящее время для эффективного охлаждения автомобильных двигателей используют закрытую систему жидкостного охлаждения с замкнутым циклом.

    Конструкция

    В обязательном порядке система содержит расширительный бачок, который служит для компенсации изменения объема жидкости при изменении ее температуры. Кроме того, через него заливают теплоноситель.

    Также в состав системы входят:

    • водяная рубашка силового агрегата (пространство между двойными стенками блока цилиндров и его головки в местах отвода чрезмерного количества тепла);
    • датчик температуры;
    • биметаллический или электронный термостат, обеспечивающий оптимальную температуру в системе;
    • помпа-насос центробежного типа, обеспечивающий принудительную циркуляцию охлаждающей жидкости в системе;
    • вентилятор, с помощью которого усиливается поток встречного воздуха на основной радиатор системы;
    • радиатор, осуществляющий передачу тепла окружающей среде;
    • радиатор отопителя, предназначенный для передачи тепла непосредственно в салон автомобиля;
    • контрольный прибор, встроенный в панель приборов автомобиля.

    Принцип действия

    Охлаждающая жидкость заливается в систему через расширительный бачок. Постоянно циркулируя внутри системы, она отводит тепло от составных частей мотора, нагревающихся в процессе работы, нагревается, попадает в радиатор, охлаждается в радиаторе встречным потоком воздуха и возвращается обратно.

    При необходимости включается вентилятор, усиливая эффективность охлаждения. Для замкнутых систем охлаждения температура теплоносителя не должна превышать 126 градусов Цельсия. Таким образом, обеспечивается оптимальный тепловой режим работы силового агрегата.

    Дополнительные функции

    Кроме своей главной задачи – отвода тепла от нагревающихся элементов, жидкостная система охлаждения двигателя обеспечивает также:

    • Прогрев силового агрегата в холодное время года

    В современных системах жидкостного охлаждения предусмотрено два контура, по которым может циркулировать охлаждающая жидкость. Это сделано для того, чтобы в момент пуска холодного двигателя, когда его детали и сама жидкость имеют низкую температуру, циркуляция теплоносителя осуществлялась по малому кругу (мимо радиатора).

    Обеспечивается это термостатом, который в момент, когда температура поднимется до определенного уровня (70-80 градусов Цельсия), открывается, давая возможность теплоносителю циркулировать по большому кругу (через радиатор). Таким образом, осуществляется ускоренный процесс прогрева двигателя.

    • Нагревание воздуха в салоне автомобиля

    В холодное время года с помощью горячего теплоносителя происходит нагревание воздуха в салоне автомобиля. Для этого служит дополнительный радиатор, установленный в салоне и оснащенный собственным вентилятором. С их помощью тепло, отобранное от горячей жидкости, распространяется по всему объему салона.

    • Снижение температуры нагнетаемого в цилиндры воздуха

    Специально для двигателей, оснащенных турбонагнетателями, предусмотрены двухконтурные системы, в которых один контур обеспечивает охлаждение жидкости, а второй – охлаждение воздуха.

    Кроме того, контур охлаждения теплоносителя также представляет собой двухконтурную систему, один контур которой охлаждает головку блока цилиндров, а другой – сам блок.

    Это вызвано тем, что в турбированном моторе температура головки блока цилиндров должна быть ниже температуры самого блока на 15…20 градусов Цельсия. Особенностью такой системы охлаждения является то, что каждый контур контролируется собственным термостатом.

    Достоинства и недостатки

    Жидкостная система охлаждения двигателя присутствует практически у всех современных автомобилей. Принципиально отличаясь от систем воздушного охлаждения, она гарантирует:

    • равномерное и быстрое прогревание силового агрегата;
    • эффективный отвод тепла в любых условиях эксплуатации двигателя;
    • снижение затрат мощности;
    • стабильный тепловой режим работы мотора;
    • возможность использования выделяемого тепла для нагревания воздуха в салоне и пр.

    Среди немногочисленных недостатков жидкостной системы охлаждения можно отметить:

    • необходимость регулярного обслуживания и сложность ремонта;
    • повышенную чувствительность к изменениям температуры.

    Неисправности и способы их устранения

    Всем системам жидкостного охлаждения свойственны характерные неисправности. Чаще всего встречаются:

    1. заклинивание термостата в закрытом положении (циркуляция жидкости осуществляется по малому кругу);
    2. поломка помпы;
    3. повреждение выпускного клапана, встроенного в пробку расширительного бачка;
    4. утечка теплоносителя вследствие разгерметизации системы (повреждение уплотнителей, коррозия и пр.).
    5. Кроме того, достаточно часто термостат заклинивает в положении «Открыто» (теплоноситель циркулирует по большому кругу), что увеличивает время прогрева холодного мотора и способствует нестабильности теплового режима при его дальнейшей работе.

    Все эти неисправности характеризуются значительным повышением рабочей температуры силового агрегата, что может привести к закипанию теплоносителя и перегреву мотора.

    Устраняются все дефекты путем замены неисправных и/или поврежденных деталей или комплектующих.

    Воздушная система охлаждения

    Моторами воздушного охлаждения оснащались транспортные средства в 50-70 годах прошлого века. Типичными представителями таких автомобилей являются «Запорожец» или FIAT 500. Сейчас моторы с воздушным охлаждением в автомобилестроении практически не встречаются.

    Конструкция и принцип действия

    Конструктивно система принудительного воздушного охлаждения монтируется в подкапотном пространстве транспортного средства и состоит из:

    • отсасывающего или нагнетающего вентилятора;
    • направляющих ребер рубашки охлаждения двигателя;
    • органов управления (дроссельные заслонки, управляющие подачей воздуха или муфта, регулирующая частоту вращения вентилятора в автоматическом режиме);
    • температурного датчика, установленного в силовом агрегате;
    • контрольного прибора, выведенного на приборную панель в салоне автомобиля.

    Охлаждение мотора осуществляется встречным холодным воздухом. Для усиления его потока чаще всего используют вентилятор нагнетающего типа. Он усиливает поток холодного плотного воздуха и обеспечивает его подачу в больших количествах при малых энергетических затратах.

    Отсасывающий вентилятор требует больших затрат мощности, однако обеспечивает более равномерный отвод тепла от деталей силового агрегата.

    Достоинства и недостатки

    Моторы с принудительным воздушным охлаждением отличаются:

    • простотой конструкции;
    • низкими требованиями к изменению температуры окружающей среды;
    • небольшим весом;
    • несложным техническим обслуживанием.

    К недостаткам системы воздушного охлаждения относят:

    • большую потерю мощности мотора, которая расходуется на обеспечение работы вентилятора;
    • высокий уровень шума во время работы вентилятора;
    • недостаточное охлаждение отдельных элементов двигателя из-за неравномерного обдува;
    • невозможность использования излишков тепла для обогрева салона.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector