Camgora.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Распиновка датчика кислорода ваз 2107

Распиновка датчика кислорода ваз 2107


Большинство циркониевых лямбда-зондов, которые ставятся на автомобили начиная 1999 года, имеют одинаковые цветовые дифференциации циркониевых датчиков. То же и с лямбда-зондами, выпускаемыми с применением титановых сплавов – распиновка у них соответствует одинаковым значениям, выведенным в таблице. Одна лишь разница – машин с лямбда-зондами на циркониевой основе очень много, титановые – редкость, но все же встречаются. Определение назначения каждого контакта лямбда-зонда можно определить, воспользовавшись специальными таблицами, которые будут представлены ниже.

Если сочетание цветов вашего датчика будет идентично сочетанию цветов одной из колонок предложенных таблиц ниже (циркониевые или титановые лямбды) – значит датчик имеет указанную конструкцию и распиновка лямбда зонда на 4 провода соответствует указанным в таблице данным.

Таблица распиновки датчиков лямбда-зонда

Назначение

Цветовые комбинации для циркониевых датчиков.

Как проверить лямбда-зонд и признаки не исправности? Подойдет ли Бош универсальный?

  • Машину дергает когда едешь на малых оборотах – 1 ответ

Перво-наперво при выходе из строя и неисправности лябды в поведении авто появляются несколько ощутимых последствий:

  • Увеличенный расход топлива
  • Нестабильная работа двигателя авто (рывки)
  • Нарушается работа катализатора (повышается токсичность)

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

Проверка лямбда-зонда тестером:

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

Как пользоваться таблицами?

Посмотрите цвета проводов кабеля отходящего от датчика лямбда зонд. В колонках таблиц имеются доступные варианты сочетаний цветов. Если сочетание цветов вашего датчика совпадёт с сочетанием цветов одной из колонок предложенных таблиц, значит, ваш датчик имеет ту или иную конструкцию.
Для определения назначения каждого провода обратитесь к левой колонке выбранной таблицы.

Пример.

Ваш датчик имеет 4 провода со следующей цветовой комбинацией: 2 коричневых, 1 фиолетовый и 1 бежевый. Четвёртая колонка Таблицы распиновки циркониевых датчиков имеет такое же сочетание цветов, значит ваш датчик циркониевый. Далее обращаемся к левой колонке этой же таблицы и выясняем назначение каждого провода:
оба коричневых – нагревательный элемент
фиолетовый – сигнал
бежевый – масса (минус)
Затем осуществляем соединение проводов по цветам.

Таблица распиновки циркониевых датчиков.

В данной таблице представлена распиновка 4-х проводных циркониевых лямбда зондов, устанавливаемых на 95% автомобилей в период с 1999 года по настоящее время.

Таблица распиновки титановых датчиков.

В данной таблице представлена распиновка 4-х проводных титановых лямбда зондов, устанавливаемых на небольшое число автомобилей в период с 2001 года по настоящее время.

Посмотреть тип вашего датчика можно также воспользовавшись панелью подбора лямбда зонда для вашего автомобиля, где в разделе характеристики, можно увидеть тип датчиков, устанавливаемых на ваш автомобиль.

Vectra Club Russia

  • Наша команда

Распиновка лямбда зонда ?

  • Версия для печати

Распиновка лямбда зонда ?

  • Цитата

Сообщение Yeaah » 28 окт 2012 08:02

  • Цитата

Сообщение Монтёр » 28 окт 2012 08:49

Re: Распиновка лямбда зонда ?

  • Цитата

Сообщение Yeaah » 28 окт 2012 14:42

  • Цитата

Сообщение Монтёр » 28 окт 2012 15:11

  • Цитата

Сообщение kiselsv » 29 окт 2012 15:56

  • Цитата

Сообщение Yeaah » 29 окт 2012 19:48

  • Цитата

Сообщение Монтёр » 29 окт 2012 20:05

  • Цитата

Сообщение Yeaah » 29 окт 2012 20:43

  • Цитата

Сообщение Kalevala » 30 окт 2012 21:55

  • Цитата

Сообщение Yeaah » 30 окт 2012 22:06

Re: Re:

  • Цитата

Сообщение Mitriu » 30 окт 2012 22:14

  • Цитата

Сообщение Yeaah » 30 окт 2012 22:39

  • Цитата

Сообщение Kalevala » 30 окт 2012 22:43

  • Версия для печати
  • Opel Vectra Club
  • Объявления, о клубе, клубные новости
  • Москва
  • Встречи
  • Отчеты
  • Санкт-Петербург
  • Встречи
  • Отчеты
  • Дороги
  • Регионы
  • 61-Ростов
  • 23-Кубань
  • 51-Мурманск
  • 10-Карелия
  • 67-Смоленск
  • 63-Самара
  • 40-Калуга
  • Эстония
  • Чистилище
  • Поездки. Путешествия.
  • Сборы
  • Отчеты
  • Официальный раздел
  • Партнёры клуба
  • Корзина
  • Ремонт и эксплуатация
  • Vectra A
  • — FAQ —
  • Двигатель
  • Vectra B
  • — FAQ —
  • Vectra C
  • — FAQ —
  • — Техническое обслуживание —
  • Insignia (Vectra D)
  • — FAQ —
  • Общие вопросы
  • — ГБО —
  • — Дизель —
  • FAQ
  • Сервисы и магазины
  • Москва
  • Санкт-Петербург
  • Регионы
  • Официальные дилеры
  • Доводка авто
  • Стайлинг
  • — Vectra A —
  • — Vectra B —
  • — Vectra С —
  • — Insignia —
  • Тюнинг
  • АвтоЗвук
  • Проекты
  • Коммерция
  • Клубная Карта и Скидки
  • Куплю — Запчасти
  • — Автомобиль —
  • Диски/Шины
  • — Другое —
  • Продам — Запчасти
  • — Автомобили —
  • Диски/Шины
  • — Другое —
  • Приму в дар
  • Отдам даром
  • Отзывы по продажам и покупкам
  • Разговоры, общение и т.д.
  • Гараж
  • Хобби, увлечения
  • Юмор, анекдоты, шутки
  • Закон
  • Спорт
  • Кино, аудио и видео

Кто сейчас на конференции

Сейчас этот форум просматривают: Radrik13 и 16 гостей

Тема: пятипроводной лямбда зонд на октавии

Опции темы
  • Версия для печати
  • Подписаться на эту тему…

пятипроводной лямбда зонд на октавии

Здравствуйте.
на октавии 1.6 2007г перед катализатором стоит 5 проводный л.зонд может кто знает его характеристики.
для чего нужен 5-й провод . 2 провода подогрев 1 провод сигнальный другой питающий , а пятый энто для чего. также когда зонд работает напряжение колеблется от макс. до мин. а здесь на холостом ходу разница колебаний( по вагкому) от 1.25в до 1.38в когда даешь газу
прыгает до 5в потом падает до 0в и обратно восстанавливается до 1.25
короче может кто сталкивался с таким девайсом пожалуйста обьясните
суть его работы.
пс:может это так называемый широкополосный зонд. (обычный работает как компаратор) то ли бедная смесь то ли богатая.(сигнал цифровой).
а этот еще учитываетуровень изменения содержания кислорода . (короче сигнал аналоговый)

Ответ: пятипроводной лямбда зонд на октавии

Сам спросил — сам и ответил. Это ШДК (широкополосный датчик кислорода). Вообще-то выводов должно быть 6 — 3 пары — подогрев, кристалл и молекулярный насос. Кратко суть работы: управляя током молекулярного насоса, ЭБУ старается поддерживать оптимальный состав смеси. Посему мерять напряжение на выходе кристалла (как у обычных ДК) бесполезно.
Удачи!

Ответ: пятипроводной лямбда зонд на октавии

5-контактный датчик обедненной смеси
Принцип работы и описание проверки
Как уже отмечалось, обычные датчики кислорода имеют ограничения по применению, так как они могут использоваться только для поддержания состава топливно-воздушной смеси в диапазоне стехиометрического состава смеси (14,7:1). С развитием конструкций двигателей и повышением их мощности, ужесточением требований к содержанию вредных веществ в отработавших газах возникла необходимость более точного определения состава топливно-воздушной смеси.

Для анализа состава смеси в диапазоне от 12:1 до 23:1 HONDA (и не только) использует датчик кислорода, называемый датчиком обедненной смеси (LAF-Sensor). Блок управления (ECM) использует сигналы этого датчика наряду с данными о частоте вращения коленчатого вала, положением коленчатого и распределительного валов, положением дроссельной заслонки, нагрузкой, температурой для поддержания устойчивости работы двигателя при обедненной смеси при 2500-3200 об/мин (в зависимости от положения дроссельной заслонки и нагрузки). Такие датчики использовались в Civic VX 1992-95 гг., Civic HX 1996-98 гг. и двигателях VTEC-E. Кроме этого, они применялись на некоторых европейских моделях VAG.

LAF датчик внешне очень похож на традиционный O2 (кислородный) датчик, за исключением того, что он подключен бόльшим количеством проводов. Такие датчики выпускают известные фирмы Bosch, NGK, HJS и другие. LAF-датчик Honda устроен сложнее, чем обычный датчик. Даже притом, что используется тандем из двух практически стандартных датчиков кислорода, работает он совершенно иначе.

В атмосфере содержится приблизительно 21 % кислорода. В отработавших газах бензинового двигателя примерно 1-2 %. В обычном датчике, за счет разницы концентрации, ионы кислорода перемещаются в твердом электролите ZrO2 и создают разность потенциалов. Чем больше разница концентраций кислорода в атмосфере и отработавших газах, тем больше выходное напряжение. Это напряжение поступает в БУ, что позволяет регулировать состав смеси.

LAF датчик напоминает традиционный кислородный не только внешне, но и некоторыми внутренними особенностями. Как видно из рисунка 1 он фактически «собран» из двух обычных датчиков (1 и 2). Внешняя сторона чувствительного элемента датчика 1 находится в потоке отработавших газов, а его внутренняя сторона соприкасается не с атмосферой, а с диффузионной камерой.

Позже мы увидим, что ECM управляет концентрацией кислорода в ней. Датчик 2 установлен «позади» датчика 1 и его внешняя сторона создает герметичный отсек между этими двумя датчиками. Внутренняя часть датчика 2 находится в атмосфере. Контакт внешней стороны датчика 1 подключен к ECM и называется входом ячейки напряжения (cell voltage input). На этом выводе генерируется напряжение, которое пропорционально разнице в концентрации кислорода в отработавших газах и в диффузионной камере. Диффузионная камера не соприкасается с атмосферой, но компьютер управления двигателем может изменять в ней содержание кислорода.

Второй контакт (reference voltage) соединен с внутренней областью датчика 1 и к внешней стороне датчика 2. На этот контакт комп подает эталонное напряжение 2,7 В относительно минуса аккумулятора.

Третий контакт — от внешней стороны датчика 2 используется для того, чтобы управлять направлением «покачивания» кислорода — в диффузионную камеру или из неё (pump cell control).

Управление LAF Датчиком

Благодаря тому, что ECM управляет содержанием кислорода в диффузионной камере, LAF датчик измеряет состав топливно-воздушной смеси в широком диапазоне (на рис. 2 структурная схема датчика). При этом он проверяет выходное напряжение датчика 1, который аналогично традиционному кислородному датчику, вырабатывает напряжение, обратно пропорциональное разнице концентрации кислорода у своих электродов. Управляя количеством кислорода в диффузионной камере, ECM пытается поддерживать на «выходном контакте датчика 1 напряжение 0,45 В.

В зависимости от направления протекания тока через датчик 2 (контакт управления ячейкой насоса), кислород перемещается («накачивается») в диффузионную камеру или из неё. Так же, как многие другие электрические явления, движение ионов кислорода есть обратимый процесс. Например, протекание электрического тока создает магнитное поле, и, в свою очередь, изменение магнитного поля вызывает перемещение электронов (электрический ток). В кислородном датчике перемещение ионов кислорода между электродами создает разность потенциалов. Но при этом, если на электроды подать напряжение от внешнего источника, то это вызовет перемещение ионов кислорода.

Блок управления изменяет величину напряжения на датчике 2 и, тем самым, определяет направление перемещения ионов кислорода в диффузионной камере. Иными словами, элемент, который контактирует с отработавшими газами, является чувствительным элементом. Пространство между двумя циркониевыми элементами образует диффузионную камеру. Прилагая переменное напряжение к управляющему элементу, ECM изменяет количество кислорода в диффузионной камере. Так как она является опорной для чувствительного элемента, то это позволяет влиять на его выходное напряжение. При этом компьютер проверяет напряжение чувствительного элемента, которое зависит от изменения количества кислорода в отработавших газах. И прикладывает напряжение к элементу достаточное для поддержания выходного напряжение датчика равным 0,45 В.

По величине приложенного напряжения определяется реальный состав смеси. В отличие от стандартного датчика кислорода, напряжение такого датчика может быть как положительным, так и отрицательным. Положительное напряжение указывает бедную смесь, отрицательное напряжение — признак обогащенной смеси. Нормальный диапазон изменения напряжения составляет примерно 1.5 В.

Функционирование при богатых смесях (λ 1)

При обеднении смеси процесс происходит в обратном (противоположном) направлении. Поскольку содержание кислорода увеличивается, то перемещение ионов кислорода из диффузионной камеры к системе выпуска замедляется. При этом выходное напряжение датчика 1 уменьшается. БУ «ощущает» это изменение, увеличивает напряжение на насосной ячейке, и датчик 2 «качает» в диффузионную камеру (diffusion chamber) большее количество кислорода. Это увеличение количества кислорода в диффузионной камере заставляет большее количество ионов кислорода двигаться по направлению к системе выпуска, что увеличивает выходное напряжение датчика.

В результате ECM контролирует напряжение управления насосной ячейкой для поддержания на датчике 1 0,45 В. Это напряжение используется для определения состава отработавших газов в диапазоне от 12:1 до 22:1. Как будет изложено ниже (описание проверки), напряжение на насосной ячейке пропорционально воздушно-топливному коэффициенту (составу смеси).

Для систем с обратной связью по напряжению LAF-датчика введен новый параметр – «управляющий состав смеси» (commanded AF ratio). Его суть состоит в том, что БУ определяет оптимальное соотношение между количеством воздуха и топлива в зависимости от режима работы двигателя. После определения оптимального состава смеси для текущего состояния двигателя БУ сохраняет его значение в памяти и в дальнейшем поддерживает необходимое напряжение на контакте насосной ячейки в соответствующем диапазоне. На рис. 3 (Данные диагностического сканера) представлены значения параметров инжекторной системы и показания датчиков на различных режимах работы двигателя. Например, ECM определил, что автомобиль может двигаться при более бедной смеси. После обеднения её состава уменьшением времени впрыска (pulse width, PW) проверяется напряжение на насосной ячейке. Как только достигнут необходимый результат, будет зафиксировано значение длительности открытого состояния форсунок. Иными словами, блок управления определяет оптимальный состав смеси и использует LAF датчик для его поддержания в этом диапазоне.

На рисунке 4 (Назначение контактов разъема) назначение LAF-датчика с помощью 8-контактного разъема его контактов. 1. «+» нагревателя (HT CNTL, оранжевый) 2. «-» нагревателя (GND, желтый) 3. «-» ЕСМ 4. Калибровочный резистор (Label) 5. Свободный 6. Ячейка напряжения (VS+, красный) 7. Насосная ячейка (IP+, красный) 8. Опорное напряжение (IP-, VS+, красный).

Примечание о подключении LAF датчика: в жгуте проводки автомобиля используется семь проводов и подключение с помощью 8-контактного разъема. Но сам датчик подключен к разъему только пятью проводами. К двум контактам разъема присоединены калибровочные резисторы (calibrating resistor), сопротивление которого обычно 4 кОм. Возможно подключение с помощью 10-контактного разъема (фото справа). В этом случае сопротивление «крайнего» резистора примерно 0,65-0,7 кОм, второго – 55 — 60 кОм. Сопротивление нагревателя составляет примерно 2 — 13 Ом.

Проверка LAF датчиков

Главным образом проверка рассматриваемых датчиков состоит из проверок напряжения в трех точках: -«опорное» напряжение (должно быть 2,7 В) -ячейки напряжения (должно быть 0,45 В) -напряжение «насосной» ячейки. Это напряжение эквивалент напряжения кислородного датчика и изменяется в соответствии с изменением состава топливно-воздушной смеси. Однако это напряжение обратно по отношению к обычному датчику: малое (низкое) – при богатой смеси и высокое – при бедной. Все эти проверки (рис. 5 Схема проверки датчика) проделаны при прогретом до рабочей температуры двигателе и после прогрева датчика при 2000 об/мин в течение 2 минут. Опорное Напряжение (Reference Voltage) Провод, который является общим для обоих датчиков — провод опорного напряжения. Не путайте этот провод с «минусом» корпуса автомобиля (chassis ground), так как на нем есть напряжение.

Проверка опорного напряжения проводится с помощью цифрового вольтметра (DVOM) при подключении положительного входа к контакту «Reference Wire» (контакт No. 8), отрицательного — к «общему» проводу (контакт No. 6). Значение – 2,7 В. Напряжения на ячейке насоса (Pump Cell Voltage) Напряжение на ячейке насоса — наиболее информативное напряжение при диагностике, так как оно отражает состав отработавших газов. Это напряжение не постоянно и должно проверяться с помощью обычного, а еще лучше, цифрового запоминающего осциллографа (digital storage oscilloscope, DSO). Все приведенные проверки напряжения сделаны с использованием DSO в масштабе 500 мВ/дел и 200 мсек/дел при подключении следующим образом: положительный провод (сигнальный) к Pump Cell Control (контакт 7), отрицательный — к Reference Voltage (контакт 8). Значение при обогащении примерно 1,0 В, при обеднении примерно 0,4 В.

Тест «на обогащение» Rich Response Test

Впрыскивайте распылителем топливо во впускной коллектор (или снимите и заглушите вакуумный шланг управления клапаном регулировки давления в топливной системе). Это позволит временно обогатить топливо-воздушную смесь. Напряжение на контакте «pump cell» должно изменить полярность (на отрицательную) и стать равным примерно –1,0 В. На рис. 6 (Результаты проверки с помощью осциллографа.) показаны результаты проверки на Civic VX 1992 года выпуска при заведомо исправном LAF-датчике. Значение напряжения на pump cell на этом автомобиле было приблизительно –1,3 В. Тест «на обеднение» Lean Response Test Временно обедните смесь. Это произойдет после прекращения подачи дополнительного топлива (или после того, как будет восстановлено вакуумное соединение). Я предпочитаю отсоединять разъем форсунки. Это быстро создает значительное обеднение смеси в нужное для Вас время. При обедненном состоянии напряжение должно увеличиться примерно до 0,4 ч 0,6 В. На рис. 7 (Результаты проверки «на обеднение») показаны результаты такой проверки на том же автомобиле. Значение этого параметра составляет примерно +0,4 В. Эта проверка была проведена при отключении форсунки. Полный диапазон изменения при переходе от положительного к отрицательному напряжению должен превысить 1 В. На тестируемом автомобиле он составлял 1,7 В, что является признаком исправного датчика.

Время отклика (постоянная времени)

Кратковременно обогатите топливную смесь, резко открывая и отпуская дроссельную заслонку. Напряжение pump cell должно немедленно уменьшиться. Время перехода в состояние обогащенной смеси должно быть не более 100 мсек. Если длительность переключения больше, то датчик неисправен и его желательно заменить. На рис. 8 (Результаты проверки на кратковременное обогащение) показаны результаты проверки после того, как была дважды открыта дроссельная заслонка. После первого открытия произошло временное обеднение (сразу после первоначального обогащенного состояния), и второе открытие проверило способность датчиков реагировать (откликнуться) на изменение состава смеси от обедненного к богатому. Вполне исправный датчик.

Следует заметить, что LAF датчикам присущи те же проблемы, что и обычным кислородным датчикам (см. статьи в этой страничке). Наиболее вероятные причины их неисправностей это обрыв нагревательного элемента и загрязнение датчика из-за применения некачественного топлива. Следует принять к сведению, что цена LAF датчика для Civic HX 1996-1998 гг. иногда составляет более чем 400 $US. Поэтому чтобы не попасть впросак следует быть максимально уверенным в необходимости его замены. Надеюсь, что этот материал будет полезен для этого.

Инструкция по установке универсального датчика кислорода

Инструкция по установке универсального датчика кислорода

Установка должна производиться только квалифицированным специалистом в специализированной ремонтной мастерской ! Инструкция приведена только в ознакомительных целях.

Пожалуйста, внимательно прочитайте эту инструкцию перед снятием кислородного датчика с вашего автомобиля

ИНСТРУКЦИЯ ПО УСТАНОВКЕ: (смотрите иллюстрации)

Установка должна производиться только квалифицированным специалистом в специализированной ремонтной мастерской ! Инструкция приведена только в ознакомительных целях.

ШАГ 1. Запомните, как проложена проводка установленного датчика. Таким же образом нужно будет проложить позже проводку универсального датчика. Отсоедините штекер старого датчика от электроники автомобиля (не размыкайте и не перерезайте проводку самого датчика). Демонтируйте старый датчик соответствующим инструментом.

ШАГ 2. Сравните старый датчик с универсальным датчиком. Проводка универсального датчика должна быть как мин. 40мм короче проводки старого датчика. При необходимости

соответственно укоротите проводку универсального датчика.

ШАГ 3. Теперь укоротите проводку универсального датчика таким образом, чтобы каждый отдельный провод был короче предыдущего на 40мм, начиная с любого провода.

ШАГ 4. Теперь укоротите проводку от разъема старого датчика.

ШАГ 5. После этого наденьте на каждый отдельный провод спец. изоляционную трубку, прилагаемую к комплекту универсального датчика.

ШАГ 6. На каждый отдельный провод наденьте водозащитную изоляцию. Обратите внимание на то, что широкий конец водозащитной изоляции показывает на конец провода (место соединение).

ШАГ 7. С помощью подходящего инструмента (изоляционные кусачки) снимите 8мм изоляции с каждого конца провода. Теперь наденьте на провода универсального датчика контактное соединение и с помощью соответствующего инструмента сожмите конструкцию. Следите за тем, чтобы не торчали неизолированные провода, и соединение было безупречно.

ШАГ 8. Еще раз обратите внимание на таблицу соответствия проводки и убедитесь, что провода подобраны правильно. Теперь соедините провода старого датчика с проводкой универсального датчика, надев на провода контактное соединение. И здесь убедитесь в том, чтобы не торчали неизолированные части проводки, и сожмите соединение соответственно. Для упрощения процесса мы рекомендуем начинать с самого короткого провода универсального датчика.

ШАГ 9. Подвиньте водозащитную изоляцию к крепежному соединению с двух концов проводки. После этого наденьте специальную изоляционную трубку на контактное соединение так, чтобы трубка полностью закрывало соединение и водозащитную изоляцию.

ШАГ 10. Используйте фен с горячим воздухом для закрепления изоляционной трубки посередине над контактным соединением. Для того, чтобы обеспечить должную гидроизоляцию проводки, водозащитная изоляция должна находится внутри изоляционной трубки.

ШАГ 11. Снимите защитный колпачок универсального датчика и монтируйте датчик. Используйте усилие: М18 = 35-58 Нм

Проводка датчика должна быть проложена так же, как была проложена старая проводка. Оригинальные крепежи должны быть зафиксированы. Избегайте прикосновения проводки с горячими частями автомобиля (Коллектор, нейтрализатор).
Если необходимо, используйте крепежи для прикрепления проводов друг к другу.

Таблица соответствия проводки

Производитель датчика

Нагревательный провод (х2)
(только на 3-4 контактных датчиках)

Сигнальный провод

Массовый провод (только на 2,4 контактных датчиках)

Какое напряжение должно быть на датчике кислорода

Лямбда зонд: что такое и где находится

Лямбда зонд (ƛ зонд) – датчик, который замеряет объём кислорода в выхлопных газах и сравнивает со стандартом. Иными словами, это кислородный датчик. Если показатели его не устраивают, он подаёт сигнал в блок управления.

Место нахождения зависит от числа датчиков в машине. Так, в ТС, выпущенных до 2000 года, чаще всего стоит один. В более поздних моделях — от 2 датчиков. Первый всегда находится под капотом, второй (если он есть) – под днищем машины.

Лямбда-зонд и его проверка мультиметром

Лямбда-зонд предназначен для анализа выхлопных газов автомобиля на количество кислорода и на современных автомобилях устанавливается вместе с так называемым катализатором. Избыток этого газа в топливовоздушной смеси не сулит вашей машине ничего хорошего, потому что работа катализатора напрямую зависит от кислорода. Как проверить лямбда-зонд на исправность мультиметром? Поговорим об этом далее.

  • 1 Что такое лямбда-зонд
  • 2 Признаки неисправности
  • 3 Проверка датчика кислорода мультиметром 3.1 Видео: Как прозвонить и проверить зонд
  • 4 Что делать при обнаружении поломки



    Как работает датчик

    Выхлопные газы проходят сквозь датчик, а внутрь него поступает чистый воздух из атмосферы. Из-за разной окислительной способности чистого воздуха и отработавших газов появляется разность потенциалов. Эти показания и отправляются в ЭБУ.

    Внутри датчика спрятаны токопроводящий элемент, электроды, сигнальный контакт и заземление. Вся эта система начинает работать только после прогрева до 300–400 oC. Только при такой температуре твёрдый электролит способен проводить электричество.



    ОБЩАЯ ИНФОРМАЦИЯ И ПРИНЦИП ДЕЙСТВИЯ

    Как можно понять из названия детали, датчик кислорода (ДК) – это прибор, посредством которого ЭБУ получает информацию о количестве оставшегося кислорода в выхлопных газах.

    ДК является достаточно сложным в конструкционном плане устройством. Состоит он из керамического электролита, который способен переносить крайне высокие температуры, вплоть до четырехсот градусов. Электролит сделан из диоксида циркония, поверхность которого обработана оксидом иттрия. Поверхность оксида покрыта напылением из платины. Использование платины обусловлено тем, что она является материалом, обладающим максимальной теплопроводностью.

    Помимо основного электролита, конструкция лямбда зонта состоит из следующих частей:

    • Защитные экранированные наконечники с обеих сторон электролита, на которых расположены отверстия для забора воздуха и выхлопного газа. Наконечники, в паре с электролитом, являются основной функциональной частью датчика кислорода, по которым анализирующее устройство определяет разность потенциалов;
    • Наконечники являются своеобразным корпусом, внутри которого расположен элемент с высокой проводимостью тока (коллектор);
    • Между наконечниками расположено устройство, считывающее возникающий электрический сигнал;
    • Всё элементы конструкции датчика кислорода размещены внутри металлического корпуса. К лямбда зонду подведена проводка из четырех проводов: 2 белых провода, которые отвечают за питание устройства, и два черных – первый, передает полученные данные к ЭБУ, второй – заземление.

    Виды кислородных датчиков

    Современные ТС оснащаются тремя видами датчиков.

    Циркониевый. Одна из самых популярных моделей, основной элемент в составе — диоксид циркония. Наконечник керамический, начинает работать только при нагреве до 350 oC. Быстро разогревается за счёт вмонтированной нагревательной детали с керамическим изолятором.

    Такие датчики делятся на 1, 2, 3 и 4 проводные.

    Титановый. Наконечник устройства изготовлен из диоксида титана. Внешне датчик мало отличается от циркониевого, но работать начинает только при температуре от 700 oC. Из-за сложной конструкции, высокой стоимости и излишней чувствительности к температурным перепадам такие датчики редко используются.

    Широкополосный. В отличие от предыдущих моделей, у этого датчика имеются две ячейки:

    1. Измерительная. Благодаря электронной схеме модуляции, в составе газов внутри ячейки сохраняется показатель ƛ =1.
    2. Насосная. Если смесь богатая, дополняет состав ионами кислорода из атмосферы, если обеднённая — выводит лишние молекулы кислорода из диффузионного отверстия во внешнюю среду.

    Проверка опорного напряжения датчика кислорода (лямбда зонд)

    И так первую проверку лямбда зонда, которую мы можем провести самостоятельно, это проверка опорного напряжения. Для этого нам понадобится тестер в режиме Вольтметра. Включаем зажигание и замеряем напряжение между сигнальным проводом и массой. В большинстве моделей автомобилей это напряжение должно равняться 0,45В. Допускаются небольшие отступления от нормы как в ту так и в другую сторону, но здесь уже все зависит от качества и состояния проводки в автомобиле.

    Признаки и причины неисправности ƛ-зонда

    Лямбда-зонд в процессе эксплуатации авто может выйти из строя. Чаще всего датчик ломается из-за некачественного топлива, попадания топлива или масла внутрь, или неполадок в системе подачи горючего.

    О неисправности лямбда-зонда могут говорить следующие признаки:

    • обороты растут до максимума, после чего резко выключается мотор;
    • обороты на холостом ходу становятся нестабильными;
    • мощность существенно падает при повышении оборотов;
    • электронный блок выдаёт ошибку из-за поздней подачи сигнала с ƛ-датчика;
    • машина едет рывками.

    Чтобы вернуть датчику работоспособность, его необходимо вынуть и правильно очистить. Для этого снимают керамическую головку и убирают загрязнения тряпкой с химическим средством. Если и это не помогает, датчик придётся менять.

    Признаки неисправности

    Признаки неисправности лямбда зонда могут быть следующие:

    1. Повышается расход топлива;
    2. «Плавают» обороты мотора на холостых;
    3. Сбои в работе катализатора, сильное нехарактерное нагревание устройства, потрескивание после остановки, повышенный уровень токсичности в выхлопных газах (резкий неприятный запах);
    4. Появление «СНЕСК ЕNGINЕ» на панели приборов.

    Если не работает лямбда зонд как ведет себя машина?

    1. Неустойчиво работает двигатель;
    2. Пропала динамика набора скорости, ощущаются рывки автомобиля.

    К сожалению, данные признаки могут указывать и на другие проблемы. Но проверку рекомендуют начинать именно с датчика кислорода хотя бы с его внешнего осмотра.

    Как проверить лямбда-зонд на работоспособность

    Существует несколько способов проверить лямбда-зонд на исправность. Самый простой и поверхностный — тщательный осмотр устройства, самый сложный — диагностика при помощи специального оборудования.

    Внешний осмотр датчика

    Итак, внешнее изучение кислородного датчика будет состоять из нескольких шагов:

    1. Проверить внешнюю часть, которая находится вне катализатора. Не должно быть оплавленных участков, обрывов или замкнутых контактов.
    2. Выкрутить датчик из катализатора и изучить нижнюю часть, обычно спрятанную в катализаторе. Пятна сажи на ней говорят о том, что топливо слишком концентрировано, двигатель и клапаны близки к износу или в выхлопной системе произошла утечка. Отложения серого цвета сигнализируют о высоком содержании свинца в топливе.

    Проверка лямбда-зонда мультиметром (тестером)

    Потребуется вольтметр, омметр или мультиметр, в котором объединяются оба эти устройства. Если используется последний, его нужно перевести в режим замера сопротивления. Чтобы испытать нагреватель датчика, необходимо:

    1. Вывести из колодки датчика контакты 3 и 4 разъёма (стандартно это белый и коричневый провода).
    2. Подсоединить контакты к выходам тестера и измерить сопротивление.

    Показатели могут быть разными, обычно они варьируются в пределах 2–10 Ом. Цифра более 5 Ом говорит об отличной работоспособности датчика. Если сопротивление вообще не выводится на дисплей, это говорит о том, что в нагревателе лямбда-зонда порвался провод и требуется немедленная замена.

    Прогрев зонда

    Кроме того, мультиметром можно проверить восприимчивость наконечника кислородного датчика. Для этого нужно завести машину и прогреть мотор до 70–80oC. Последующий алгоритм будет таким:

    1. Довести мотор до 3000 оборотов в минуту и зафиксировать этот показатель на 2–3 минуты, пока датчик не прогреется.
    2. Минусовой щуп мультиметра подсоединить к массе машины, другой состыковать с выходом датчика.
    3. Изучить данные на тестере: они должны варьироваться от 0,2 до 1 В и меняться 10 раз в секунду.
    4. Надавить педаль газа в пол и резко отпустить её. Исправный датчик выдаст значение в 1 В, после чего резко упадёт до ноля. Если цифры на дисплее не меняются при действиях с педалью и показывают 0,4–0,5 В, датчик требует замены.

    Если напряжения нет вовсе, стоит проверить проводку. Для этого нужно «прощупать» мультиметром все провода, соединяющие реле с выключателем зажигания.

    Проверка осциллографом

    Диагностика осциллографом будет более продуктивной, поскольку в этом случае можно зафиксировать промежуток времени, за которое меняется выходное напряжение. Нормальными считаются показатели ниже 120 мСек.

    Итак, алгоритм проверки будет таким:

      Найти сигнальный провод датчика и подключить к нему осциллограф. Затем нужно завести мотор и разогреть его до 60–70oC. Это нужно, чтобы прогреть датчик воздуха и дождаться от него обратной связи. В процессе подготовки на осциллографе уже появится сигнал о генерации небольшого тока (до 1 В).

    Когда начнёт прогреваться лямбда-датчик, напряжение ещё немного вырастет. По мере прогрева до 300–400oC диаграмма приобретёт динамику.

    Если на прогретом двигателе дойти до 2500–3000 оборотов, исправный датчик должен показать такую картину:

    Если резко отпустить газ, смесь переходит в режим обогащения, а лямбда откликается таким образом:

    В процессе проверки важно засечь, через какое время датчик переходит в рабочий режим, то есть когда на диаграмме появляется динамика. Также анализируется реакция на работу двигателя на 2000–3000 оборотов в минуту. Если после прогрева сигнал стабильно находится только в нижнем или только в верхнем положении, датчик придётся менять. Если сигнал напоминает плавную извилистую линию, как на картинке ниже, датчик сгорел или вышел из строя.

    Проверка бортовой системой

    Если в машине имеется ЭБУ, поиск неполадок можно существенно облегчить. Стоит обратить внимание на индикатор «Check Engine», который нередко предупреждает о проблемах с лямбда-зондом. Чтобы уточнить причину сигнала, достаточно подключить к бортовому компьютеру автосканер.

    К кислородному датчику будут относиться ошибки:

    • P0130: датчик отправляет неверные данные;
    • P0131: сигнал слишком слабый;
    • P0132: сигнал слишком сильный;
    • P0133: КД медленно реагирует;
    • P0134: датчик вообще не даёт сигнала;
    • P0135: нагреватель первого датчика не функционирует;
    • P0136: произошло замыкание второго датчика;
    • P0137: КД2 медленно реагирует;
    • P0138: КД2 слишком быстро реагирует;
    • P0140: разрыв в цепи КД2;
    • P0141: нагреватель второго датчика неисправен;
    • P1102: слабое сопротивление нагревателя КД;
    • P1115: цепь повреждена, считать данные невозможно.

    Датчики лямбда зонда – какие бывают?

    Современные датчики кислорода имеют 4-х проводную систему, но бывают исключения! Нередко встречаются одно, двух и трех проводные датчики лямбда зонд.

    Современные датчики кислорода

    У четырехпроводного датчика два провода идут на цепь подогрева и один провод – сигнальный. Также один провод идёт на массу проверки лямбда зонда, которую можно произвести самостоятельно.

    Как проверить на работоспособность лямбда зонд

    Многие водители знают, где расположены и для чего нужны датчики массового расхода воздуха и кислорода во впускном коллекторе. Наличие этих приборов поддается логическому объяснению: электронный блок управления (ЭБУ) двигателем должен получить исходные данные для формирования топливно-воздушной смеси.

    А зачем нужен кислородный датчик в системе отвода выхлопных газов? Современные бензиновые автомобили обязательно оснащаются этим сенсором, вне зависимости от класса и стоимости. При этом комплект (включая катализаторы), стоит относительно дорого.

    Основное назначение кислородного датчика — экология. Автомобили представляют серьезную угрозу для атмосферы. Один из способов снизить токсичность выхлопа — контроль полноты сгорания топлива.

    Информация: Из-за специфической формы чувствительного элемента датчика, его называют лямбда зондом.

    Как работает лямбда

    Происходит непрерывное сравнение воздуха в отработанных газах. Специальный гальванический элемент выступает в роли своеобразной воздушной батарейки. Различие в условиях химических реакций снаружи и внутри лямбды приводит к появлению напряжения на контактных выводах.

    Количество кислорода в эталонном воздухе практически неизменно, а его содержание в отработанных газах зависит от полноты сгорания топливной смеси:

    • кислород в избытке — напряжение растет;
    • малое содержание О2 — напряжение падает.

    Поскольку датчик кислорода ВАЗ или других марок работает в условиях высокой температуры, его корпус и электроды изготавливаются из особо прочных материалов: цирконий, титан, керамика. Для эффективной реакции с кислородом на электроды наносится платиновое напыление.

    Кроме того, измерительный электрод может работать только при определенной температуре. До момента прогрева датчика выхлопными газами температура поддерживается нагревательным элементом.

    Диагностика неисправностей лямбда зонда

    Любой сенсор может выйти из строя. Учитывая условия работы, датчик кислорода находится в группе риска.

    Что произойдет, если лямбда выйдет из строя? Ухудшится экологичность автомобиля? Безусловно. При недостаточном сгорании топлива токсичность выхлопа будет выше на порядок. Но предназначение этого сенсора выходит за рамки соблюдения условий Евро. Данные о содержании остаточного кислорода в отработанных газах используются ЭБУ для соблюдения правильной пропорции топливной смеси. Исправность датчика обеспечивает ровную тягу и нормализацию расхода топлива.

    Внутренняя проверка лямбда производится постоянно силами ЭБУ. Если работоспособность сенсора под вопросом, блок управления двигателем переходит на аварийный режим формирования топливной смеси. Далее следуют явные симптомы неисправности:

    • немотивированно высокий расход топлива при исправной работе прочих узлов, отвечающих за формирование топливной смеси;
    • неравномерный холостой ход двигателя, особенно без нагрузки;
    • рывки автомобиля и хлопки в выхлопной системе при наборе скорости;
    • сильный нагрев каталитических нейтрализаторов, в некоторых случаях заметный визуально (раскаленный металл корпуса).
    • потеря мощности автомобиля вне зависимости от степени прогрева мотора.

    Важно: Перегрев катализатора опасен не только выходом из строя дорогостоящего узла. Вы получаете под днищем автомобиля потенциальный источник пожара: мусор или сухая трава может воспламениться.

    • механические повреждения;
    • некачественное топливо, содержащее химические элементы, искусственно повышающие октановое число;
    • топливные присадки, добавляемые владельцем автомобиля;
    • неправильное формирование пропорций топливной смеси. Тут получается замкнутый круг: поломка катализатора также может стать причиной этого явления.

    Проверка лямбда зонда своими руками

    Полная диагностика проводится в сервисных центрах, в стендовых условиях, с применением специального оборудования. Аналогичное тестирование можно провести в гараже, подключив универсальный автомобильный сканер. Разумеется, точных параметров не получите, но можно будет понять, какая часть зонда вышла из строя.

    Как проверить лямбда зонд без диагностического сканера? Это обычный электроприбор с определенными характеристиками. Из контактной колодки выходит 2, 3 или 4 провода в зависимости от модели сенсора.

    Обычным тестером можно снять базовые параметры и понять, исправен прибор или нет. Чтобы проверить лямбда зонд мультиметром, надо знать назначение контактов. Например, напряжение питания цепи подогрева можно проконтролировать, не снимая самого датчика. Между ЭБУ и датчиком кислорода протянут шлейф из 4 проводов. На некотором расстоянии от сенсора располагается разъем. Это сделано для того, чтобы защитить проводку и коннектор от воздействия высокой температуры выхлопной системы. Непосредственно от датчика до разъема протянуты провода со специальной оболочкой.

    Распиновка контактов лямбда зонда

    Для этого необходимо:

    • На контакты 3 и 4 (провода белого цвета) подается напряжение 12 вольт для подогрева внутреннего сенсора датчика кислорода.
    • Питание формирует ЭБУ. Отсоединив сам датчик, необходимо завести двигатель. Пусть он работает с перебоями, нам важно проверить наличие питания от ЭБУ.

    Как проверить сам датчик кислорода (сигнальное напряжение)

    В домашних условиях используем тестер. Рассмотри, как это сделать:

    1. Находим способ подсоединиться к разъему, не нарушая изоляцию проводов (например, с помощью тонких иголок, заправленных в коннектор).
    2. Соединив щупы тестера с контактами 1 и 2 при заведенном двигателе получаем напряжение 0,1–0,2 вольта.
    3. По мере прогрева напряжение на сигнальном контакте вырастет до 0,8–0,9 вольта.

    Если показания отсутствуют или существенно отличаются — лямбда зонд неисправен. Его требуется заменить.

    Видео по теме

    Вопрос по распиновке лямбда зонда

    #1 ЮР&C

    Добрый вечер, всем. Нужно заменить лямбду-зонд. Прикупил на емехе Bosh 0258986507, она четырех проводная. Лямбда, которую надо менять — трех проводная, она еще не снята, но концы с разъемом откушены. В боше распиновка; черный-сигнал, серый-земля, два белых-подогрев. В снимаемой лямбде три конца; два белых, один черный. Черный думаю сигнал, два белых это что? Допускаю, что снимаемая лямбда родная, но пока не выкручу поручиться не могу. Подскажите как их поженить?

    Вот тлько купил разъем с четырьмя проводами

    теперь согласно схеме 1 и 4 нога разъема это подогрев, а вот на какую ногу «+» сигнал и «-» сигнал мне не понятно. Подскажите, плиз.

    Сообщение отредактировал ЮР&C: 14 ноября 2018 — 20:29

    • Наверх

    #2 Igor 53

    Сообщение отредактировал Igor 53: 14 ноября 2018 — 18:22

    • Наверх

    #3 AnM

    В снимаемой лямбде три конца; два белых, один черный. Черный думаю сигнал, два белых это что?

    Это «знаменитая» 3-хпроводная лямбда ОМ )

    Два белых — это нагрев лямбды. Черный провод — это «сигнал» с лямбды на ЕСМ. А вот масса в данном варианте для сигнала на ЕСМ коммутируется по глушителю . т.е. просто по железу авто.

    В то же самое время, в разъеме возле правой фары, куда уходят все провода от лямбды, масса от ЕСМ есть! Надо просто эту массу подтянуть по жгуту проводов до лямбды и закоммутировать на 4-хразъмную лямбду.

    • Наверх

    #4 ЮР&C

    В то же самое время, в разъеме возле правой фары, куда уходят все провода от лямбды, масса от ЕСМ есть! Надо просто эту массу подтянуть по жгуту проводов до лямбды и закоммутировать на 4-хразъмную лямбду.

    В разъеме, который подключается к ЕСМ, который остался висеть, 4 провода. Значит ли это, что все провода подтянуты к лямбде

    Вот тлько купил разъем с четырьмя проводами

    теперь согласно схеме 1 и 4 нога разъема это подогрев, а вот на какую ногу «+» сигнал и «-» сигнал мне не понятно. Подскажите, плиз.

    • Наверх

    #5 Thomas

    • Наверх

    #6 AnM

    Сорри . оговорился. Разъем живет у ЛЕВОЙ фары, а не у правой. Жгут с проводами по левой стороне авто тянется вперед.

    В разъеме, который подключается к ЕСМ, который остался висеть, 4 провода.

    Давно уже разбирался с этой ситуацией . наверное что-то подзабыл. Заранее извиняюсь.

    Я все уточню . и отпишусь.

    Разобрался. Спасибо Диме (Flanger) . подтвердил информацию.

    Там ситуация такая: у ОМ в разъеме даже с 3-х-проводной лямбдой изначально живет 4 провода. Но «минусовой сигнальный» провод тянется только до разъема у левой фары. А дальше (до ЕСМ) просто отсутствует. И если есть желание грамотно подключить 4-х-проводную лямбду, то надо от разъема у фары протянуть кусок провода до ЕСМ, чтобы таким образом организовать коммутацию «минусового сигнала» непосредственно на ЕСМ.

    Иначе . при подключении 4-х-проводной лямбды на место 3-х-проводной . надо будет «минус сигнал» персонально цеплять куда-то на массу двигателя.

    • Наверх

    #7 ЮР&C

    Но «минусовой сигнальный» провод тянется только до разъема у левой фары.

    Разъем-это три разъема на стойке? Сигнальные концы по схеме подключаются ЕСМ клеммам В2 и В3 которые идут с разъема от ног 2 и 3. О какой «земле» идет речь?

    • Наверх

    #8 AnM

    1) Разъем-это три разъема на стойке?

    2) Сигнальные концы по схеме подключаются ЕСМ клеммам В2 и В3 которые идут с разъема от ног 2 и 3.

    1) Разъем Н-10 или Н-11 в зависимости от модификации авто.

    2) По схеме на трупера — да . все так.

    Но на ОМ (судя по информации, которую я собирал от людей, которые устанавливали себе на ОМ 4-х-проводную лямбду) не так.

    У меня под рукой только схема на ОМ 95 года.

    Как видно, «минус сигнал» напрямую к ЕСМ не идет. Хотя в этом году эта масса уже в разъем Н-10/Н-11 заведена.

    А на авто более ранних лет — там и даже этой массы в разъеме нет.

    • Наверх

    #9 ЮР&C

    Уважаемый AnM, вот и я запутался. Может Вы с высоты Вашего опыта ткнете мне пальцем, что и куда. Монтерей 92 года, проводка родная, двигатель контрактный 6VD1W. Про мозги не знаю. У меня другая альбомная схема. Что в натуре не знаю, надо звонить. Про подогрев — понятно, а куда сигнальные концы.

    Сообщение отредактировал ЮР&C: 15 ноября 2018 — 10:33

    • Наверх

    #10 Thomas

    • Наверх

    #11 AnM

    с высоты Вашего опыта

    Высота моего опыта ))) говорит лишь то, что та схема, которую вы показываете, от трупера. ))) А что сейчас у вас творится на борту авто — надо определять по месту. Прозванивать провода. Только так появится какая-то определенность.

    Если нет желания особо в это вникать — поддержу совет выше . А что тут еще остается то? Просто подсоединяйте вашу 4-х-проводную лямюду на место снятой 3-х-проводной. Только теперь «сигнальный минус» с этой новой лямбды придется персонально так или иначе присоединить куда-нибудь на массу авто.

    • Наверх

    #12 ЮР&C

    Да соедините уже белые с белыми, чёрный с чёрным, а серый на массу прикрутите куда-нибудь!

    Да все я понял. Спокойствие, только спокойствие. Спасибо.

    Высота моего опыта ))) говорит лишь то, что та схема, которую вы показываете, от трупера. ))) А что сейчас у вас творится на борту авто — надо определять по месту. Прозванивать провода. Только так появится какая-то определенность.

    Если нет желания особо в это вникать — поддержу совет выше . А что тут еще остается то? Просто подсоединяйте вашу 4-х-проводную лямюду на место снятой 3-х-проводной. Только теперь «сигнальный минус» с этой новой лямбды придется персонально так или иначе присоединить куда-нибудь на массу авто.

    Сигнальный минус (или как он там называется)я вывел из разъема Н10 и посадил на землю. Распиновку сделал по схеме которую Вы сбросили. Спасибо

    Распиновка контактов лямбда зонда

    Легенда номер 2: Провода лямбда-зонда нельзя паять.

    Действительно, бош прямо запрещает паять провода. Однако, если включить голову, то можно понять, почему. И все-таки спаять их, но хитрым образом.
    Итак, почему нельзя паять провода:
    а) сталистые жилы очень плохо паяются. без норм флюса может получиться фейл. (самый простой ЗИЛ-1 отлично подойдет — проверено)

    б) рядом с раскаленным коллектором жилы могут распаяться

    и главное:
    в) при качественной пайке и последующей изоляции места пайки, может получиться ситуация, что лямбда не сможет получать по проводам кислород. (припой будет «пробкой», через которую кислород не пойдет)

    Т.о. было бы правильно написать бошу: «паять можно со специальным флюсом, тугоплавким припоем, качественно изолируя место пайки от коллектора и обеспечивая дополнительный воздухозабор после места пайки».

    Но, сами понимаете, правильнее написать «нельзя».
    Как обеспечить воздухозабор после места пайки: элементарно – канцелярским ножом сделайте маленькие насечки на каждом проводе и дело в шляпе.

    Более того, ПРАВИЛЬНО спаять провода ЛЗ — не только не плохо, а даже хорошо. Почему — об этом ниже )

    vlad1024
    Посмотреть профиль
    Отправить личное сообщение для vlad1024
    Найти ещё сообщения от vlad1024

    Легенда номер 3: Лямбду нужно ставить только оригинальную или только подбирать по МБ (в худшем случае каталогу Бош).

    Это, конечно, очень далеко от правды. На M271, например, подходят сотни разных лямбд. На более новые моторы и того больше.

    Однако, действительно, не все широкополосные лямбды взаимозаменяемы.

    Немного теории. Пятипроводные широкополосные лямбда зонды бывают трёх основных видов (может больше, но три основных). Отличаются по типу сенсора (керамический элемент) стоящего ВНУТРИ зонда.

    1. LSU-4.0
    2. LSU-4.2 (4.21, 4.23)
    3. LSU-4.9

    Все эти 3 типа — разработки БОШ. Внутри одного типа сенсоры АБСОЛЮТНО одинаковые. Разъемы могут быть разные, длина проводов может быть разной, а вот сам датчик, провода и калибровочный резистор (который стоит внутри разъема – см ниже) — идентичны ПОЛНОСТЬЮ.

    Так прямо бош и заявляет на своем сайте. Собственно, в это нетрудно поверить, зная, что БОШ сам разработал эти типы датчиков и потом предложил производителям их использовать. Зачем при таком раскладе делать десятки подтипов чувствительных элементов – непонятно.

    Нужно сразу сказать , что лямбды 5проводные, но ШЕСТИконтактные. 6й контакт (к которому не идет провод) на самом деле ИСПОЛЬЗУЕТСЯ. Он используется калибровочным резистором, который стоит в самой фишке лямбды между красным проводом и «пустым» контактом. Калибруется на заводе индивидуально для каждого экземпляра сенсора, тк они чуть отличаются друг от друга.

    Если поэтому, например, решим ставить датчик от Хонды, у которой другая фишка, то разъем придется поставить НАШ. А вот калибровочный резистор придется выпаять из разъема хонды и впаять в нашу фишку.
    В остальном все будет ГУД.

    Итак, подведем итоги.
    =========
    Если хотите найти себе бюджетную лямбду, вам нужно:

    а) прочитать маркировку своего датчика и пробить ее номер на сайте БОШ: [Только зарегистрированные пользователи видят ссылки. Регистрация в клубе] — там будет сказано, это датчик LSU-4.0, 4.2 или 4.9

    б) подобрать ЛЮБОЙ соответствующий по типу датчик, который дешевле

    в) _правильно_(см выше) перепаять или переобжать разъем, если необходимо(часто этого не требуется, тк разъемы совпадают у разных марок).

    г) переставить калибровочный резистор (если выполняем пункт в.)

    Всё, лямбда будет работать.

    Зачем этот гимор и сколько можно сэкономить? На моем M271 стояла LSU-4.21 лямбда. Оригинал стоит 15-20, бошевский аналог —

    10. Я купил бошевскую лямбду от Nissan Altima (чо это за ведро?) за 2300р. Почему 2300? Видимо, никому не нужна и валялась на складе с докризисных времен. 7,5 тысяч экономии, конечно, не очень много, но тоже деньги. Были еще варианты от X5, кайена, японцев — много в районе 4-5 тысяч, может быть где-то даже с совпадающим с нашим разъемом. Но я решил испробовать самую дешевую.

    Как подбирать датчик? Очень просто! У бош LSU-4.2x датчики маркируются 0 258 007 xxx (xxx от 0 до

    400). LSU-4.9 датчики маркируются 0 258 017 xxx (0..

    Я лично сварганил скрипт по базе экзиста/autodoc’а, который слил все их предложения по 0258007xxx и нашел самое дешевое. Кто не умеет программить, может просто попробивать ручками. Минут за 20 управится.

    Экзист выводит еще аналоги, иногда они дешевле боша. Но, как нетрудно понять, на 99% придет все равно БОШ — просто на датчике может быть еще что-то нашкрябано рядом с их лого)

    Я заказал датчик SG964 странной конторы «STANDARD». Пришел бош 0258007179 )
    Разумеется, экзист может ошибиться, поэтому лучше пробить еще по базе аналогов БОШа, является ли этот датчик LSU-4.xx который вам нужен.

    ============
    На некоторых форумах я встречал мнения, что LSU-4.9 можно поставить вместо 4.2x и наоборот. Хотя Бош прямо говорит о их несовместимости (необходимости менять прошивку в контроллере).
    Я проверил. У меня несколько машин в семье, поэтому чисто для теста я снял датчик с ауди. Оказался Бош LSU-4.9. Подкинул его на мерседес — сигнал пошел. Прогазовки, накат — графики рисует похожие на правду. Уж было возрадовался, ан нет. Сбрасываешь ошибку — через 5 минут снова появляется. Код не помню, суть, что «медленная реакция л.з.»+»неправильный сигнал». Ауди практически новая, и ошибок ее комп не выдает.

    Цвета проводов датчика кислорода

    Современный автомобиль – это электромеханическая система, которая состоит из множества деталей и узлов, что связаны между собой совокупностью различных датчиков. Эти датчики поддерживают рабочее состояние авто и обеспечивают его продуктивную работу. Сегодня в этой статье мы будем вести речь про датчик кислорода (лямбда зонд). В частности ответим на вопрос как проверить лямбда зонд с 4 проводами тестером. Это самый распространенный тип датчика и он весьма важен. Перед тем, как приступать к изучению и тестированию работоспособности ЛЗ мы рекомендуем кратко изучить его конструктивные особенности, виды и принцип действия.

    Что такое лямбда зонд, принцип действия и его виды

    Итак, датчик воздуха — это небольшое устройство, которое установлено в выпускном коллекторе любого современного автомобиля и служит для оценки концентрации остаточного кислорода в отработавших газах. Благодаря показаниям этого устройства компьютерный блок вашего автомобиля получает данные на основе которых производит приготовление горючей смеси. Лямбда зонд учитывает остаточную концентрацию кислорода в сгоревшем топливе и подает сигнал на электронику о том, что вновь поступающую горючую смесь нужно либо обогатить, либо обеднить воздухом. Разумеется то, что при любой неисправности лямбда зонда может пострадать работоспособность двигателя машины.

    Помни! Для сгорания 1 кг. смеси топлива и воздуха, необходимо затратить около 15-ти кг. кислорода.

    Устройство лямбда зонда

    Современный датчик воздуха представляет собой небольшое конструктивное устройство внутри которого имеется ряд взаимосвязанных деталей.

    Конструкция лямбда зонда

    1. Металлический корпус на котором имеется резьба. Она предназначена для фиксации датчика в посадочном отверстии;
    2. Изолятор изготовленный из керамики;
    3. Уплотнитель в виде кольца;
    4. Проводники;
    5. Защитная оболочка с отверстием для вентиляции;
    6. Контакт;
    7. Керамический наконечник;
    8. Электрический нагреватель;
    9. Отверстие для выпускного газа;
    10. Стальная оболочка.

    Как правило, начало измерений отработавших газов наступает при температуре 310-400 градусов. Именно при такой температуре специальный наполнитель в датчике обретает электропроводимость. Пока температура не достигла нужного значения, электронный блок управления автомобиля берет показания с других датчиков, а уже потом с лямбда зонда. Особенность его работы заключается в том, что выхлопные газы и атмосферный воздух разделены емкостью с токогенерирующим составом. В следствии определенных химических воздействий на эту емкость со стороны выхлопа и со стороны воздуха возникает разница концентрации кислорода на основе чего вырабатываться электрический потенциал. Значения этого потенциала отправляются на блок управления автомобилем.

    Все датчики кислорода делятся на четыре типа в зависимости от количества проводов в их конструкции:

    1. Однопроводные;
    2. Двухпроводные;
    3. Трехпроводные;
    4. Четырехпроводные.

    Виды лямбда датчиков

    Все вышеперечисленные лямбда зонды бывают узкополосные и широкополосные.

    Основные причины неисправностей лямбда-зонда и последствия его поломки

    После того, как мы определились с понятием и особенностями работы датчика кислорода, можно сделать вывод, что он играет ключевую функцию в нормальной работе двигателя внутреннего сгорания. Так что же может привести к поломке лямбда зонда и выхода его из строя? Существуют два аспекта в этом вопросе: внешние факторы и внутренние о которых читайте ниже.

    • Протекание в корпус датчика охлаждающей жидкости или же тормозной;
    • Уход за датчиком средствами, которые не предназначены для таких целей;
    • Некачественное топливо с чрезмерным содержанием свинца;
    • Перегрев датчика, который также случается при использовании плохого топлива.

    После того, как лямбда зонд вышел из строя ваш автомобиль начнет подавать определенные признаки:

    • Существенные рывки при движении;
    • Чрезмерные расход топлива;
    • Плохая работа катализатора;
    • Плавающие обороты двигателя;
    • Излишки токсических отходов в отработавших газах.

    Серьёзность всего вышеперечисленного должна наталкивать водителя на проверку лямбда зонда практически каждые 10 тыс. км. Его полная замена желательна после каждых 40 000 км пробега.

    Проверка лямбда зонда с 4 проводами тестером. Методы проверки ЛЗ

    Итак, мы подошли к тому вопросу, который волнует каждого автолюбителя: как же проверить датчик лямбда зонд в домашних условиях? Для этого вам понадобится обычный тестер (мультиметр) или вольтметр.

    Лямбда зонд 4 провода

    Первым делом необходимо прогреть двигатель, после чего произвести замеры сопротивления на проводах подогревателя. Как правило, это два белых провода полярность между которыми можно не соблюдать. Нормальное сопротивление между ними должно равняться от 2 до 10-ти Ом. Если это значение другое, то следовательно датчик неисправен.

    График напряжений лямбда зонда

    Идем далее. Теперь нужно минусовой провод тестера подключить на корпус двигателя. При этом плюсовой контакт подключите к сигнальному проводу самого датчика. Как правило это будет черный провод. На прогретом двигателе нажмите на педаль газа и наберите обороты до 3000 об/мин. Удерживайте педаль в этом положении около трёх минут. В это время производится прогрев лямбда зонда. Теперь вы можете проверить включение датчика кислорода.

    Напряжение между корпусом двигателя и сигнальным (черным проводом) детали должно колебаться в районе от 0,2 до 1 вольта. За каждые прошедшие 10 секунд времени датчик должен включаться около 10-ти раз. В тех случая когда тестер будет показывать 0,4-0,5 вольта и не будет производиться включение, то можно сделать вывод о неисправности лямбда зонда.

    Также вам нужно знать о том, что при резком нажатии на педаль газа тестер должен показывать напряжение около 1 вольта. При резком отпускании педали – ноль вольт.

    На этом у нас всё. Надеемся что ваш датчик полностью исправен и выполняет возложенные на него функции. Если у вас остались вопросы, пожалуйста, оставляйте их в комментариях.

    Как проверить лямбда-зонд и признаки не исправности? Подойдет ли Бош универсальный?

    • Машину дергает когда едешь на малых оборотах – 1 ответ

    Перво-наперво при выходе из строя и неисправности лябды в поведении авто появляются несколько ощутимых последствий:

    • Увеличенный расход топлива
    • Нестабильная работа двигателя авто (рывки)
    • Нарушается работа катализатора (повышается токсичность)

    Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

    На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

    Чем и как можно проверить лямбду

    Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

    Сначала ищем провод обогрева:

    Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

    Проверка лямбда-зонда тестером:

    Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

    Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

    Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

    Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

    Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

    • всё время 0,1 — мало кислорода
    • всё время 0,9 — много кислорода
    • Зонд исправен, проблема в чём-то другом.

    Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

    1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
    2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
    3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
    4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

    Проверка напряжения в цепи подогрева

    Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

    Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

    Проверка нагревателя лямбда зонда

    Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

    Проверка опорного напряжения датчика кислорода

    Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.


    Большинство циркониевых лямбда-зондов, которые ставятся на автомобили начиная 1999 года, имеют одинаковые цветовые дифференциации циркониевых датчиков. То же и с лямбда-зондами, выпускаемыми с применением титановых сплавов – распиновка у них соответствует одинаковым значениям, выведенным в таблице. Одна лишь разница – машин с лямбда-зондами на циркониевой основе очень много, титановые – редкость, но все же встречаются. Определение назначения каждого контакта лямбда-зонда можно определить, воспользовавшись специальными таблицами, которые будут представлены ниже.

    Если сочетание цветов вашего датчика будет идентично сочетанию цветов одной из колонок предложенных таблиц ниже (циркониевые или титановые лямбды) – значит датчик имеет указанную конструкцию и распиновка лямбда зонда на 4 провода соответствует указанным в таблице данным.

    Таблица распиновки датчиков лямбда-зонда

    Назначение

    Цветовые комбинации для циркониевых датчиков.

    0 0 голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector