Camgora.ru

Автомобильный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подключить выключатель с подсветкой автомобильный

Как подключить выключатель с подсветкой автомобильный

либо между моторчиком и Arduino UNO r3

Что есть в наличии:

  • Battery UPS 12240 6 F2 (12 V 240W/Pcs/9.6V/5Min)
  • Моторчик: BRS-550SH DC 12V
  • Кнопка

Нужно разобрать как подключить кнопку, чтобы при включении включался моторчик.

  • Где изображение черточки — это «Плюс»
  • Где изображение кружочка — это «Минус»

Итого: от батарее плюс «+» идет к контакту черточки, а минус «-» идет к любому контакту моторчика (изменяя подключение к моторчику меняется и сторона вращения вала), затем от свободного контакта моторчика подключение идет к контакту кружочка на кнопке.

Отлично с этим двухклавишным выключателем я разобрался.

Теперь как собрать следующую схему:

Arduino UNO R3 + Кнопка/Выключатель/Тумблер + батарейный отсек.

Когда кнопкой я замкнул цепь на плате Arduino UNO R3 должен зажигаться светодиод.

Разъем по центру — это подключение к плюсу «+»

Схема работы тублера:

Тумблер отличается только тем, что у него фиксированные положения, а у тактовой кнопки — нет. Всё остальное идентично — контакты либо замыкаются, либо размыкаются… Включить тумблер — это тоже самое, что нажать и удерживать тактовую кнопку.

На заметку: А вот третью ногу которая не используется лучше заизолировать, т. к. она включает цепь помимо выделенной.

Как подключить кнопку или тумблер

Задача: Как подключить кнопку между батарейным отсеком и Arduino UNO R3,

либо между моторчиком и Arduino UNO r3

Что есть в наличии:

Нужно разобрать как подключить кнопку, чтобы при включении включался моторчик.

Итого: от батарее плюс «+» идет к контакту черточки, а минус «-» идет к любому контакту моторчика (изменяя подключение к моторчику меняется и сторона вращения вала), затем от свободного контакта моторчика подключение идет к контакту кружочка на кнопке.

Отлично с этим двухклавишным выключателем я разобрался.

Теперь как собрать следующую схему:

Arduino UNO R3 + Кнопка/Выключатель/Тумблер + батарейный отсек.

Когда кнопкой я замкнул цепь на плате Arduino UNO R3 должен зажигаться светодиод.

Разъем по центру — это подключение к плюсу «+»

Схема работы тублера:

Тумблер отличается только тем, что у него фиксированные положения, а у тактовой кнопки — нет. Всё остальное идентично — контакты либо замыкаются, либо размыкаются… Включить тумблер — это тоже самое, что нажать и удерживать тактовую кнопку.

Выключатель с индикатором включения

Выключатели с индикаторами отличаются от светодиодных совершенно другим принципом использования — лампа в них загорается тогда, когда включено освещение. Основное назначение контрольной лампы — сигнализировать о включенном освещении в подвале, на чердаке, в кладовой или на улице. Используется для контроля расхода электроэнергии. Индикатор может устанавливаться для каждой из клавиш или только для одной из них.

Схема подключения и работы выключателя с функцией подсветки выстроена по следующему принципу. Контрольная лампа параллельно подключается к клеммам выключателя. Когда цепь замыкается, ток проходит через индикатор и осветительный прибор — оба загораются. Если выключатель выключен, ток не поступает ни к индикатору, ни к лампе.

Индикация включенного освещения может быть выполнена в комбинации: 1 контрольная лампа на одну клавишу или для каждой клавиши по одной лампе

Выключатель с подсветкой – схема подключения и монтаж

Всё в жизни человека основано на мелочах. Внимание к ним определяет то, насколько жизнь будет приятной и удобной. Кажется, что выключатель с подсветкой – мелочь, не заслуживающая особого внимания, однако это вовсе не так, ведь такая вещь имеет огромное количество плюсов.
В этой статье подробнее раскроем особенности данного устройства, начиная с источника подсветки индикатора, заканчивая тем, как именно должно быть проведено подключение.

Как правило, сегодня можно встретить два варианта подсвечиваемых током элемента в электрических выключателях. Речь идет о неоновой лампочке и светодиоде. Внешне они очень похожи, но вот по спецификациям они все же различаются.

Для большего понимания мы предлагаем таблицу, в которой видна разница между ними по отношению к минимальному току и падению напряжения.

Вид подсветкиМинимальный токПадение напряжения
Светодиод2 мА2 В
Неоновая лампочка0.1 мА70 В

При выборе такого рода устройства эти данные нужно учесть, поскольку неоновая лампочка создаёт большее падение напряжения.

Интересно то, что не со всеми лампами световая индикация работает корректно. Здесь остановимся чуть поподробнее.

Когда вы планируете подключать такой выключатель, смотрите, какая у вас лампа. Если это лампа накаливания или же галогеновая, подключайте ее без какой-либо боязни. Если речь идёт об энергосберегающих или светодиодных лампах – стоит призадуматься. У вас в таком случае есть два варианта решения задачи.

В случае выбора второго варианта пути нужно пересматривать схему подключения во избежание таких проблем, как потухшая подсветка или моргание лампочки, отсутствие подачи тока к ней.

Световой индикатор может выглядеть и как маленькая точка, и как небольшая линия

Можно обратить внимание и на более мелкие детали устройства, например:

Такое устройство не так уж и сложно подключить, как кажется на первый взгляд, однако все равно надо быть внимательным. Нужно выбирать только качественное оборудование, но в крайнем случае можно работать и с тем, что есть.

За подсветку, как правило, отвечает неоновая лампочка или светодиод, подсоединенный параллельно контакту выключателя. А раз соединение параллельное, то это значит, что световой индикатор работает 24/7, независимо от того, работает устройство или нет.

У подсветки имеется свое сопротивление, отличное от других звеньев цепи.

Получается, что при выключенном освещении, но при включенной подсветке ток проходит через токоограничивающий резистор, оттуда он идёт к световому индикатору, после – к лампочке через клеммы подключения и в конце – на нейтраль, преодолевая путь через нить накаливания.

Когда освещение включено, цепь подсветки, подключенная параллельно общей цепи, шунтируется замкнутым контактом. Поскольку у него гораздо меньшее сопротивление, чем у цепи подсветки, это приводит к выключению светового индикатора.

Общая схема того, как работает подсветка в таком устройстве

Вышеупомянутый токоограничивающий резистор подключен последовательно, его задача – снижение показателей тока до приемлемого значения. Поскольку оба вида лампочек требуют разную величию тока, ставятся отличные друг от друга резисторы.

Вид светового индикатораРассеиваемая мощность, ВтСопротивление
Светодиод1100-150 кОм
Неоновая лампочка0,250,5-1 МОм

Подключение через резистор светодиодную подсветку — неидеальный выход, и этому есть причины.

Итак, чтобы решить проблему обратного тока, нужно установить диод параллельно светодиоду подсветки. Рассмотрим, как сделать это правильно.

Еще одна схема работы подсветки, но уже с диодом

Если использовать данную схему подключения, нужно подобрать подходящий диод. Он по параметрам должен быть схож со светодиодом подсветки, подключенным параллельно.

Для модели светодиода AL307 можно использовать диод КД521 или его аналог.

Недостатки у данной схемы есть, и их два.

Устройство со светодиодом плохо работает со светодиодными или энергосберегающими лампами.

Для снижения нагрева резистора и затрат энергии на подсветку в цепь можно добавить еще один элемент – конденсатор. Резистор в таком случае уже подлежит замене, поскольку его задачей становится ограничения заряда конденсатора.

Обратите внимание на схему подключения, представленную ниже.

Вариант схемы с конденсатором в цепи

Резистор подбирается чаще всего лишь путем проб и ошибок, поскольку каждому конденсатору требуется свой «ограничитель» в виде этого самого резистора.

Ничто не мешает подключить вместо обычного диода еще один светодиод.

Плюс этой схемы в том, что решается проблема чрезмерного использования электричества светодиодной лампочкой подсветки (речь идёт от 50 Вт в месяц).

Однако есть и минус – трудности прокладывания конденсатора в корпус устройства и отсутствие гарантии работы с энергосберегающими и светодиодными лампами.

Вы, наверное, не удивитесь, но подключать выключатели с подсветкой нужно абсолютно таким же образом, что и без неё. Сложностей нет – если вы уже разобрались в этой теме, вы легко справитесь и с такой задачей.

В подключении нет никаких отличий, а дополнительная цепь светового индикатора не влияет на сам процесс.

Напомним ТБ при монтаже такого рода устройства.

Главное – внимательность при работе. Она должна быть максимальной. Напряжения в проводе быть не должно. Выкручивать пробки или снимать предохранитель тоже можно – видимый разрыв ничуть не навредит.

Важно! Пусть на автомате висит табличка или записка о том, чтобы никто не включал питание – это нужно для вашей безопасности.

Хотя вопросов с монтажом может быть достаточно много, на самом деле, все достаточно просто.

Кнопка с фиксацией и подсветкой

Представляю вашему вниманию обзор на достаточно редкий для Муськи товар — кнопку с фиксацией и подсветкой. Для меня удивительно, что на такой классную и достойную любого DIY-проекта вещь здесь так мало обзоров.
Много технических подробностей не обещаю (да и откуда им тут взяться), но о впечатлениях расскажу подробно. Ну-с, начнем

Электроника и автоматика на МК

Методика измерения фототока

1). Зажечь светодиод — это полностью разрядит «конденсатор».
2). Зарядим наш «конденсатор», подав на анод ноль, а на катод — единицу на короткое время.
3). Переводим анод в режим измерения (порт — как вход АЦП) и меряем напряжение на нем. Получаем исходное значение. которое понадобится нам в дальнейшем.
4). Ожидаем короткое время для определения реакции на свет. Чем больше это время, тем чувствительней детектор. Не стоит делать слишком длинным эту паузу, поскольку при очень высокой чувствительности светодиод начнет реагировать на посторонние шумы.
5). Снова измеряем напряжение и вычитаем его из исходного, полученного при первом измерении. В результате получим условное значение фототока в данный момент.
Как это выглядит схемотехнически — анод светодиода подключаем к цифровому порту микроконтроллера, а катод к аналоговому. У меня получилось такая схема:

200?’200px’:»+(this.scrollHeight+5)+’px’);»>
Device = 18F4550

Clock = 20 //Частота микроконтроллера

Include «ADC.bas» //Подключим библиотеку для работы с АЦП

Config
MCLRE = OFF //Отключим MCLRE (я не стал припаивать резистор на плату)

Dim i, LightVal1, LightVal2, Raw1, Raw2, Raw3, Raw4 As Integer //Необходимые нам переменные
//i — рабочая переменная для пищалки
//Lightval1, LightVal2 — переменные, которые будут содержать значения фототока
//Raw1, Raw2, Raw3, Raw4 — переменные для рассчета значения фототока
Dim PressBit1, PressBit2 As Bit //Это переменные для демонстрации того, что
//с помощью светодиодов можно устанавливать какие-то режимы или флаги

//——————Подпрограмма опроса светодиодов-кнопок——————————
//сразу для двух светодиодов
Sub ReadButton()
Low(PORTE.0) //Катод — в ноль
High (PORTC.1) //Анод — в единицу — зажгли светодиод
Low(PORTE.1) //То же самое
High (PORTC.2) //со вторым светодиодом
DelayMS(1) //Небольшая задержка
TRISE.0 = 1 //Переключаем в обратном направлении —
Low (PORTC.1) //заряжаем «конденсатор»
TRISE.1 = 1 //Так же со вторым
Low (PORTC.2) //светодиодом
Raw1 = ADC.Read(5) //Читаем исходные показания первого светодиода
Raw3 = ADC.Read(6) //второго.
DelayUS(1600) //Задержка для детекции фототока
Raw2 = ADC.Read(5) //Читаем конечные показания первого светодиода
Raw4 = ADC.Read(6) //второго.
TRISE.0 = 0 //Сразу можно подготовить к следующему измерению
TRISE.1 = 0
LightVal1 = Raw2 — Raw1 //Рассчитываем значения фототока для
LightVal2 = Raw4 — Raw3 //каждого светодиода
End Sub
//——-Подпрограмма генерации звука для подтверждения «нажатия кнопки»———-
Sub Beep()
For i = 1 To 400
High(PORTC.0)
DelayUS(100)
Low(PORTC.0)
DelayUS(100)
Next
End Sub

//——————-Начало основной программы————————————
//——————Инициализация переменных—————————————
ADCON2 = %10000011 ‘Настроим АЦП для работы
ADCON1 = %00001000
TRISE = 0 // Настроим порты на выход
TRISC = 0 // Настроим порты на выход
PORTC = 0 // Выключим светодиоды для начала
PressBit1 = 0 // Сбросим наши флаги
PressBit2 = 0
i = 0 // Очистим переменную счетчика
Main:

ReadButton() //Проверка «нажатия кнопок» (загораживания света перед светодиодом)
If LightVal1 >= 115 Then //Если обнаружено значительное изменение интенсивности
//света
<Это значение подобрано экспериментально.
оно варьируется в зависимости от условий и от
светодиода к светодиоду>
If PressBit1 = 1 Then
PressBit1 = 0 //то переключаем наш первый экспериментальный бит
Else
PressBit1 = 1
EndIf
Beep()
EndIf
//————то же самое для второго светодиода—————————-
If LightVal2 >= 115 Then
If PressBit2 = 1 Then
PressBit2 = 0
Else
PressBit2 = 1
EndIf
Beep()
EndIf
//—————А здесь мы индицируем состояние соответствующего бита——-
//Естественно это может быть индикацией какого-нибудь запущенного или
//остановленного процесса
If PressBit1 = 1 Then //Если было определено «нажатие», то
High(PORTC.1) //Зажигаем тот светодиод, который был «нажат»
Else
Low(PORTC.1) //Гасим тот светодиод, который был «нажат»
EndIf
//То же самое и для второго светодиода
If PressBit2 = 1 Then
High(PORTC.2)
Else
Low(PORTC.2)
EndIf
DelayMS(130) //Задержка для того, чтобы можно было видеть результат
//если ее не будет — не будет видно — зажжен светодиод или нет
GoTo Main //Начинаем программу сначала

Вторая программка — использование данного эффекта для изменения какого-то абстрактного параметра

Clock = 20 //Частота микроконтроллера

//Подключим ЖКИ к PORTD
#option LCD_DATA = PORTD.4
#option LCD_RS = PORTD.0
#option LCD_EN = PORTD.1

Include «ADC.bas» //Подключим библиотеку для работы с АЦП
Include «lcd.bas» //Подключим библиотеку для работы с ЖКИ
Include «convert.bas» //Подключим библиотеку преобразований

Config
MCLRE = OFF //Отключим MCLRE (я не стал припаивать резистор на плату)

Dim i, j, LightVal1, LightVal2, Raw1, Raw2, Raw3, Raw4 As Integer //Необходимые нам переменные
//i — рабочая переменная для пищалки
//j — переменная для управления каким-то абстрактным параметром
//Lightval1, LightVal2 — переменные, которые будут содержать значения фототока
//Raw1, Raw2, Raw3, Raw4 — переменные для рассчета значения фототока
Dim PressBit1, PressBit2 As Bit //Это переменные для демонстрации того, что
//с помощью светодиодов можно устанавливать какие-то режимы или флаги

//——————Подпрограмма опроса светодиодов-кнопок——————————
//сразу для двух светодиодов
Sub ReadButton()
Low(PORTE.0) //Катод — в ноль
High (PORTC.1) //Анод — в единицу — зажгли светодиод
Low(PORTE.1) //То же самое
High (PORTC.2) //со вторым светодиодом
DelayMS(1) //Небольшая задержка
TRISE.0 = 1 //Переключаем в обратном направлении —
Low (PORTC.1) //заряжаем «конденсатор»
TRISE.1 = 1 //Так же со вторым
Low (PORTC.2) //светодиодом
Raw1 = ADC.Read(5) //Читаем исходные показания первого светодиода
Raw3 = ADC.Read(6) //второго.
DelayUS(1600) //Задержка для детекции фототока
Raw2 = ADC.Read(5) //Читаем конечные показания первого светодиода
Raw4 = ADC.Read(6) //второго.
TRISE.0 = 0 //Сразу можно подготовить к следующему измерению
TRISE.1 = 0
LightVal1 = Raw2 — Raw1 //Рассчитываем значения фототока для
LightVal2 = Raw4 — Raw3 //каждого светодиода
End Sub
//——-Подпрограмма генерации звука для подтверждения «нажатия кнопки»———-
Sub Beep()
For i = 1 To 400
High(PORTC.0)
DelayUS(100)
Low(PORTC.0)
DelayUS(100)
Next
End Sub

//——————-Начало основной программы————————————
//——————Инициализация переменных—————————————
ADCON2 = %10000011 // Настроим АЦП для работы
ADCON1 = %00001000
TRISE = 0 // Настроим порты на выход
TRISC = 0 // Настроим порты на выход
PORTC = 0 // Выключим светодиоды для начала
PressBit1 = 0 // Сбросим наши флаги
PressBit2 = 0
i = 0 // Очистим переменную счетчика

Main:
ReadButton() //Проверим «нажатие кнопок»
//Если был перекрыт свет перед первым светодиодом
If LightVal1 >= 100 Then
Beep() //то пищим для звукового подтверждения
Inc(j) //и инкрементируем параметр
EndIf
//То же самое и со вторым
If LightVal2 >= 100 Then
Beep() //то пищим для звукового подтверждения
Dec(j) //и инкрементируем параметр
EndIf

WriteAt (1,1, DecToStr(j),» » ) //Отобразим параметр
DelayMS(60) //Задержка для того, чтобы параметр
//менялся не слишком быстро

Читать еще:  Как убрать зазор между бампером и крылом

GoTo Main //Начнем сначала

Третья программа — передача на компьютер по USB условных значений фототоков обоих светодиодов

Clock = 48 // Внешний кварц — на 20 МГц, внутренний — 48 МГц (FS USB)

#option LCD_DATA = PORTD.4
#option LCD_RS = PORTD.0
#option LCD_EN = PORTD.1

Config
PLLDIV = 5,
CPUDIV = OSC1_PLL2,
USBDIV = 2,
FOSC = HSPLL_HS,
VREGEN = ON,
MCLRE = OFF

#option USB_DESCRIPTOR = «USBProjectDesc.bas»

Include «usbhid.bas» // Импорт модуля для работы с HID
Include «ADC.bas» //Подключим библиотеку для работы с АЦП
Include «lcd.bas» //Подключим библиотеку для работы с ЖКИ
Include «convert.bas» //Подключим библиотеку преобразований

Dim Buffer(32) As Byte //Массив байт для отправки данных по шине USB
Dim LightVal1, LightVal2, Raw1, Raw2, Raw3, Raw4 As Integer //Необходимые нам переменные
//Lightval1, LightVal2 — переменные, которые будут содержать значения фототока
//Raw1, Raw2, Raw3, Raw4 — переменные для рассчета значения фототока

//Подпрограмма детекции «нажатия первой кнопки»
Sub ReadButton1()
Low(PORTE.0) //Катод — в ноль
High (PORTC.1) //Анод — в единицу — зажгли светодиод
DelayMS(2) //Небольшая задержка
TRISE.0 = 1 //Переключаем в обратном направлении —
Low (PORTC.1) //заряжаем «конденсатор»
Raw1 = ADC.Read(5) //Читаем исходные показания первого светодиода
DelayMS(3) //Задержка для детекции фототока
Raw2 = ADC.Read(5) //Читаем конечные показания первого светодиода
TRISE.0 = 0 //Сразу можно подготовить к следующему измерению
LightVal1 = Raw2 — Raw1 //Рассчитываем значения фототока

//Чтение фототока второго светодиода
Sub ReadButton2()
Low(PORTE.1)
High (PORTC.2)
DelayMS(2)
TRISE.1 = 1
Low (PORTC.2)
Raw3 = ADC.Read(6)
DelayMS(3)
Raw4 = ADC.Read(6)
TRISE.1 = 0
LightVal2 = Raw4 — Raw3
End Sub

//——————-Начало основной программы————————————
//——————Инициализация переменных—————————————
ADCON2 = %10000011 //Настроим АЦП для работы
ADCON1 = %00001000
TRISE = 0 // Настроим порты на выход
TRISC = 0 // Настроим порты на выход
PORTC = 0 // Выключим светодиоды для начала

// Подключаемся к шине USB

WriteAt (1,1, «Connection» ) //Отображаем текущий процесс на ЖКИ
DelayMS(1000) //Задержка для отображения

Repeat
Service //Ожидаем подключения со стороны компьютера
Until Attached

LCD.Cls //Очистим ЖКИ после подключения
WriteAt (1,1, «Connection OK» ) //И оповестим пользователя об этом
DelayMS(1000) //Задержка для отображения
LCD.Cls //Очистим дисплей

//Начнем основной цикл программы
While true

ReadButton1() //Считаем первую «кнопку»
ReadButton2() //Считаем вторую «кнопку»

Buffer(0) = LightVal1 //Загрузим текущие значения фототока
Buffer(1) = LightVal2 //в первые два байта массива для отправки по USB
WriteArray(Buffer,2) //Отправим данные
WriteAt (1,1,»LED1 — «, DecToStr(LightVal1),» «) //Отобразим их одновременно и
WriteAt (2,1,»LED2 — «, DecToStr(LightVal2),» «) //на индикаторе
DelayMS(200) //Задержка для отображения
Service //Процедура обслуживания шины
Wend

Вы можете посмотреть на видео, что из этого получилось.

Естественно, все это применимо и к Picbasic PRO и Proton+.

Изучайте, комментируйте, задавайте вопросы.

Скачать программу-терминал для приема данных с исходниками можно здесь

Правильное подключение светодиода. Схемы подключения.

  1. Подключение светодиода к низковольтному напряжению постоянного тока.

Чтобы подобрать резистор для светодиода, будем пользоваться следующим способом: нам известно, что напряжение светодиода 2В, соответственно при подключении светодиода к 12 вольтам (например, светодиод будем использовать в автомобиле) нам надо ограничить 10В, в принципе в случаях светодиодов правильней говорить ограничить ток светодиода, но мы при выборе резистора будем пользоваться простым проверенным многими годами способом без всяких математических формул. На каждый вольт необходим резистор сопротивлением 100 Ом, т.е. если светодиод с рабочим напряжением 2В, и мы подключаем к 12 вольтам, нам нужен резистор 100Ом х 10В=1000 Ом или 1кОм обычно на схемах обозначается 1К, мощность резистора зависит от тока светодиода, но если мы используем обычный не мощный светодиод, как правило, его ток 10-20мА и в этом случае достаточно резистора на 0,25Вт самого маленького резистора по размеру.

Резистор с большей мощностью нам понадобится в 2х случаях: 1) если ток светодиода будет больше и 2) если напряжение будет выше, чем 24В и соответственно в случаях подключения светодиода к напряжению 36-48В и выше нам понадобится резистор с большей мощностью 0,5 – 2Вт, а в случае подключения светодиода к сети 220В лучше использовать резистор на 2Вт, но при подключении светодиода к сети переменного тока нам потребуется еще ряд элементов, но об этом чуть позже.

Если требуется светодиод подключить к батарейке, скажем на 3В, то можно поставить резистор последовательно на 100 Ом, а если батарейка пальчиковая на 1,5В, то можно подключить и без резистора.
При расчете мы можем выбрать только резисторы из стандартных номиналов, поэтому нет ничего страшного, если сопротивление резистора, будет чуть больше или меньше расчетного.

Если вы используете очень яркий светодиод, а светодиод используется, к примеру, для индикации в каких-либо устройствах, то можно сопротивление резистора увеличить, и тем самым яркость светодиода уменьшится, и светодиод не будет ослеплять. Но лучше всего в таких случаях если не требуется большая яркость светодиода, то при покупке в магазине или заказе в Китае можно выбрать матовый светодиод нужного цвета и током, как правило, 6-20мА, угол обзора у данных светодиодов, как правило, составляет 60 градусов, они отлично подходят для индикации, не ослепляют и от них не устают глаза, даже если долго на них смотреть. Прозрачные белые светодиоды для данных целей, как правило, не подходят.

В случае подключения светодиода к микроконтроллеру или плате ARDUINO, как правило, рабочее напряжение составляет 5В, соответственно резистор можно взять 300-470 Ом можно и еще с большим сопротивлением. Главное учитывать, что ток не может превышать предельного тока вывода микроконтроллера, как правило, не более 10мА, поэтому сопротивление резистора 300-470 Ом для подключения светодиода является золотой серединой. Схема подключения светодиода к микроконтроллеру или плате ARDUINO представлена на рисунке 3. Стоит обратить Ваше внимание, что светодиод может быть подключен как анодом, так и катодом к микроконтроллеру и от этого будет зависеть программный способ управления светодиодом.

3. Последовательное подключение нескольких светодиодов
При последовательном соединении светодиодов чтобы их яркость не отличалась, друг от друга надо, чтобы светодиоды были одного типа. При последовательном соединении светодиодов сопротивление резистора будет меньше в отличие от случая, когда мы подключаем один светодиод. Для расчета резистора мы так же можем использовать ранее рассмотренный способ.

К примеру, нам необходимо последовательно подключить четыре светодиода к напряжению постоянного тока 12В, соответственно рабочее напряжение светодиодов 2В при последовательном соединении будет 2В х 4шт. = 8В. Тогда мы можем выбрать резистор из стандартного ряда на 470-510 Ом. При последовательном соединении светодиодов ток, протекающий через все светодиоды, будет одинаковым.

Рисунок 5 — Последовательное соединение светодиодов
Одним из недостатков последовательного соединения светодиодов является тот факт, что в случае выхода одного из светодиодов из строя, все светодиоды перестанут светится. Ниже приведена схема с последовательным соединением двух, трех и четырех светодиодов.

4.Параллельное подключение светодиодов
При параллельном подключении светодиодов резистор выбираем так же, как в случае одиночного светодиода. На каждый светодиод должен быть свой резистор при этом, если резисторы по сопротивлению будут отличаться или светодиоды будут различных марок, то будет очень заметно неравномерность свечения одного светодиода от другова. Ток при параллельном соединении будет складываться в зависимости от количества светодиодов.

5. Подключение мощных светодиодов с большим рабочим током, как правило, применяемых для освещения. При использовании мощных светодиодов лучше всего не использовать обычные резисторы, а применять специальные импульсные источники питания для светодиодов в них, как правило, уже установлены цепи стабилизации тока, данные источники питания обеспечивают равномерность свечения светодиодов и более долговечный срок службы. Светодиоды, применяемые для освещения необходимо устанавливать на теплоотвод (радиатор).

6. Подключение светодиода к переменному напряжению 220В.
(Внимание. Опасное напряжение все работы по подключению к сети 220В необходимо производить только при выключенном, снятом напряжении и при этом необходимо убедится, что напряжение отсутствует. Будьте внимательны. Ко всем элементам схемы не должно быть прямого доступа).
При подключении светодиода к переменному напряжению 220В нам понадобится не только резистор, но и диод для выпрямления напряжения, так как светодиод работает от постоянного тока. Без диода на переменное напряжение лучше не включать. Схема подключения светодиода к сети 220В представлена на рисунке 7. Благодаря тому что мы используем два резистора вместо одного, мы можем использовать резисторы мощностью 1Вт. Так же лучше всего установить конденсатор особено если будет заметно мерцание светодиода. Конденсатор может быть керамический или пленочный главное нельзя использовать электролитический конденсатор.

7. Подключение двухцветных светодиодов.
Если мы возьмем двухцветный светодиод, то увидим, что у данного светодиода не два, а три вывода, соответственно, один вывод по центру является общим, а два вывода по бокам каждый отвечает за свой цвет.

Немного математики :
Расчет сопротивления ограничивающего резистора при 5В и токе светодиода 20мА:
R = U / Imax = 5 / 0.020 = 250 Ом — соответственно сопротивление резистора при 5В должно быть не меньше 250 Ом

Схема Подключения Светодиода

СД — диод, излучатель света.


Это глубокое заблуждение.

Падение напряжения — это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию свечение.
Как подключить светодиод к 220 В

Более продвинутый вариант — RGB диод, изменяющий цвет по заранее заложенной в чип программе. При таком раскладе светодиод будет работать на определенных полуволнах — мигать с частотой 50 Гц.

Большинство светильников оснащаются специальными драйверами, преобразующими переменное электричество в постоянное 12, 24, 36 или 48 В.

Конструкции пультов бывают сенсорными или кнопочными, со всеми стандартными действиями.

Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами. Другие виды LED Мигающий Особенность конструкции мигающего светодиода — каждый контакт является одновременно катодом и анодом.

Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже так как они включены последовательно.

КАК УЗНАТЬ ПАРАМЕТРЫ ЛЮБОГО СВЕТОДИОДА

Подключение, ошибки

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. Как подключить светодиод или светодиодную ленту.

Потом цепная реакция и вся линейка выходит из строя. Монтаж цветной ленты, усилителя и контроллера RGB-контроллер предназначен для регулировки света.

Но в одной статье всего не написать, поэтому придется эту тему продолжить. Подборка диодов и расчёт БП СД ленту подключают к блоку питания напряжением 24, 12 или 6 вольт.

Обозначение светодиодов на схеме Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света.

А вот так светодиоды прослужат очень долго. Причина сего поведения кроется в следующем.

Диммер — это устройство для расширения функциональных возможностей светодиодных источников.

Всего в схеме 3 светодиода.
Как подключить МОЩНЫЙ СВЕТОДИОД.

Основы подключения к 220 В

Такой результат получается если из таблицы взять максимальное значение падения напряжения.

При этом избегают попадания горячего воздуха на полупроводник. Самые применяемые два: SMD и такой же

Визуальное определение полярности Несмотря на множество существующих в настоящее время видов конструкций светодиодного оборудования , наиболее широкое распространение получили излучающие свет диоды, заключенные в цилиндрический корпус D от 3,5 мм. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора.

Есть варианты для цепей с переменным током напряжения, подойдут от В и выше. Этапы сборки При самостоятельной сборке и последующем тестировании излучающих свет диодов в рабочем режиме, целесообразно воспользоваться данной последовательностью: определиться с техническими характеристиками, отраженными в сопроводительной документации; составить схему подключения с учетом уровня напряжения; вычислить показатели потребляемой мощности электроцепи; подобрать драйвер или блок питания с оптимальной мощностью; рассчитать резистор при стабилизированном напряжении; определить полярность LЕD-источника; припаять провода к светодиодным выходам; подсоединить источник питания; зафиксировать диод на радиаторе.

При смене полярности напряжение станет падать на сопротивление, поэтому светодиод будет полностью защищен от потенциального пробоя. Расчетное значение сопротивления мы округлили в большую сторону, значит ток в цепи будет меньше, то есть мы получили завышенное значение мощности. Выбирайте конденсатор неполярного типа, рассчитанный для эксплуатации в сети с напряжением не ниже В. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока.

Простейшая схема подключения светодиода


Он подключается последовательно через резистор либо через драйвер питания, регулирующий величину тока. Диммер — это устройство для расширения функциональных возможностей светодиодных источников. Рис 3. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка — сувенир просто выкинули. Выпрямительный диод служит для защиты led-диода от обратного напряжения.

К числу самых распространенных вариантов определения полярности светоизлучающих диодов относятся первые три способа, которые должны выполняться с соблюдением стандартной технологии. Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Внешний квантовый выход — одна из основных характеристик эффективности светодиода. Особых пояснений программа не требует.
Расчет резистора для светодиода

Понятия, сокращения, глоссарий.

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом. Параллельное соединение светодиодов В данной ситуации все происходит наоборот.

Разноцветный Разноцветный светодиод — два или больше диода, объединенных в один корпус. Расчет схемы в этом случае производится для каждой последовательной цепи подключения, а при одинаковом количестве светодиодов и их типов в каждой цепи расчет можно сделать один раз для любой последовательной группы светодиодов.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Если будет изменена полярность и напряжение пойдет в обратном направлении, то оно будет сглажено выпрямительным диодом, защищающим светодиод от пробоя. Возможна установка эффекта затухания или мерцания излучения.

Источниками светодиодного питания в условиях токовой стабилизации обеспечиваются постоянные показатели выходного тока в широком диапазоне. Место монтажа ленты очищают, обезжиривают.

Внешний квантовый выход — одна из основных характеристик эффективности светодиода. Другим вариантом будет включение всех светодиодов параллельным подключением, устанавливая 1 резистор, что рассчитан на тройной ток. Падение напряжения на светодиодах разных цветов.

По долговечности, надежности, безопасности они тоже их превзошли. Как включить светодиод в сеть переменного тока Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется. Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. К 1,5 В Показатели рабочего напряжения светоизлучающих диодов, как правило, превышают 1,5 В, поэтому сверх яркие светодиоды нуждаются в источнике питания не менее 3,,4 В. Тогда входное напряжение придется уменьшить при этом выходной ток не изменится, так и останется мА как был отрегулирован , зачем на 3 светодиода, пусть даже мощных, подавать 50В?

Последовательное подключение

Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры. Светодиод припаян к плоскости ленты.

Читать еще:  Чехолкнижка для Samsung Galaxy A31

При таком раскладе светодиод будет работать на определенных полуволнах — мигать с частотой 50 Гц. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению деградации. Если же ограничить ток на уровне 10мА, то ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет. Чтобы не произошел случайный удар током, следует провести установку разрядного резистора большего номинала, расположив его параллельно конденсатору.
Как подключить светодиод к сети 220 Вольт

Правильное подключение светодиодов

На сегодняшний день существуют сотни разновидностей светодиодов, отличающихся внешним видом, цветом свечения и электрическими параметрами. Но всех их объединяет общий принцип действия, а значит, и схемы подключения к электрической цепи тоже базируются на общих принципах. Достаточно понять, как подключить один индикаторный светодиод, чтобы затем научиться составлять и рассчитывать любые схемы.

Распиновка светодиода

Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.

Всего существует 3 надёжных способа определения полярности: визуальный, с помощью мультиметра и путём подключения к источнику напряжения. Каждый из них по-своему уникален и интересен, в связи с чем данная тема вынесена в отдельную статью: «Где плюс, а где минус?»

SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Всегда соблюдайте полярность при подключении светодиода к источнику постоянного напряжения (тока).

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Расчёт ограничительного резистора

Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора. Даже небольшой рост номинального тока приведёт к перегреву кристалла и, как следствие, к снижению рабочего ресурса. Выбор резистора производят по двум параметрам: сопротивлению и мощности. Сопротивление рассчитывают по формуле:

  • U – напряжение питания, В;
  • ULED – прямое падение напряжения на светодиоде (паспортное значение), В;
  • I – номинальный ток (паспортное значение), А.

Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:

R – сопротивление резистора, принятого к установке, Ом.

Более подробную информацию о расчётах с практическими примерами можно получить в статье о расчете резистора для светодиода. А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.

Включение светодиодов от блока питания

Речь пойдёт о блоках питания (БП), работающих от сети переменного тока 220 В. Но даже они могут сильно отличаться друг от друга выходными параметрами. Это могут быть:

  • источники переменного напряжения, внутри которых есть только понижающий трансформатор;
  • нестабилизированные источники постоянного напряжения (ИПН);
  • стабилизированные ИПН;
  • стабилизированные источники постоянного тока (светодиодные драйверы).

Подключить светодиод можно к любому из них, дополнив схему нужными радиоэлементами. Чаще всего в качестве блока питания применяют стабилизированные ИПН на 5 В или 12 В. Данный тип БП подразумевает, что при возможных колебаниях напряжения сети, а также при изменении тока нагрузки в заданном диапазоне напряжение на выходе изменяться не будет. Это преимущество позволяет подключать к БП светодиоды, используя только резисторы. И именно такой принцип подключения реализован в схемах с индикаторными светодиодами. Подключение мощных светодиодов и светодиодных матриц нужно производить через стабилизатор тока (драйвер). Несмотря на их более высокую стоимость, только так можно гарантировать стабильную яркость и продолжительную работу, а также исключить преждевременную замену дорогостоящего светоизлучающего элемента. Такое подключение не требует наличия дополнительного резистора, а светодиод присоединяется непосредственно к выходу драйвера с соблюдением условия:

  • Iдрайвера – ток драйвера по паспорту, А;
  • ILED – номинальный ток светодиода, А.

При несоблюдении условия, подключенный светодиод перегорит от перегрузки по току.

В качестве источника питания можно использовать даже одну пальчиковую батарейку на 1,5 В. Но для этого придётся собрать небольшую электрическую схему, которая позволит повысить напряжение питания до нужного уровня. О том, как это сделать, можно узнать из статьи «Как подключить светодиод от батарейки на 1,5 В».

Последовательное подключение

Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее. Через все элементы схемы течёт ток одинаковой величины:

А падения напряжений суммируются:

Исходя из этого, можно сделать выводы:

  • объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
  • при выходе из строя одного светодиода произойдёт обрыв цепи;
  • количество светодиодов ограничено напряжением БП.

Параллельное подключение

Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор. Формулы для расчёта токов и напряжений примут следующий вид:

Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.

Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в данной статье.

Смешанное включение

Разобравшись со схемами последовательного и параллельного подключения, пришло время комбинировать. Один из вариантов комбинированного подключения светодиодов показан на рисунке.

Кстати, именно так устроена каждая светодиодная лента.

Включение в сеть переменного тока

Подключать светодиоды от БП не всегда целесообразно. Особенно, если речь идёт о необходимости сделать подсветку выключателя или индикатор наличия напряжения в сетевом удлинителе. Для подобных целей достаточно будет собрать одну из простых схем подключения светодиода к сети 220 В. Например, схема с токоограничительным резистором и выпрямительным диодом, защищающим светодиод от обратного напряжения. Сопротивление и мощность резистора вычисляют по упрощённой формуле, пренебрегая падением напряжения на светодиоде и диоде, так как оно на 2 порядка меньше напряжения сети:

Из-за большой мощности рассеивания (2–5 Вт), резистор часто заменяют неполярным конденсатором. Работая на переменном токе, он как бы «гасит» лишнее напряжение и почти не нагревается.

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного RGB-светодиода расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

Как подключить выключатель с подсветкой.

28 Янв 2013г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В этой статье расскажу Вам, как подключить выключатель с подсветкой. Сразу отмечу, что здесь сложного ничего нет, потому что выключатель с подсветкой подключается так же, как и обычный выключатель. Просто в нем, в отличие от обычного выключателя, добавлен дополнительный наворот – это лампочка подсветки.

Вы должны понять и запомнить, что не имеет значения, выключатель какого производителя Вы собираетесь установить: будь то «MAKEL», «LEZARD», «SIEMENS», или любой другой компании.

Принцип действия у всех выключателей один: контакт замкнулся – свет зажегся, контакт разомкнулся – свет погас. Единственное, чем они могут отличаться, так это дизайном.

Устройство выключателя с подсветкой.

Если снять клавиши выключателя, то в нижней части можно увидеть небольшую неоновую лампу – это и есть подсветка.

Чтобы понять, как она работает, рассмотрим устройство выключателя с подсветкой. И сначала вспомним, как работает двойной выключатель.

Фаза, приходящая на выключатель, подключается на контакт L, а с контактов L1 и L2 уходит на лампы освещения, например, люстру.

Подвижные контакты выключателя замыкают между собой контакты L, L1 и L2:

1. L и L1 -> нажата первая клавиша;
2. L и L2 -> нажата вторая клавиша;
3. LL1 и L2 -> нажаты обе клавиши.

Теперь понятно, почему нельзя к выключателю одновременно подключать «фазу» и «ноль» — будет короткое замыкание.

Здесь же на выключателе установлена цепь подсветки, состоящая из токоограничивающего резистора и неоновой лампочки. Лампочка и резистор припаяны к контактам L и L1.

Схема подсветки работает следующим образом:

Пока свет выключен, контакты выключателя L и L1 разомкнуты, а значит, неоновая лампочка будет гореть, так как через нить накала лампы на нее приходит напряжение.

При включении света, подвижный контакт выключателя замыкает между собой L и L1, тем самым, исключая цепь подсветки из схемы. Лампа освещения загорается, а подсветка гаснет.

Возникает вопрос. А почему через подсветку не загорается лампа освещения?
Здесь все просто.

Чтобы зажечь неоновую лампу, достаточно небольшого напряжения и силы тока.
В схеме подсветки за это отвечает токоограничивающий резистор, который гасит лишнее напряжение. А вот для лампы освещения этого напряжения и силы тока недостаточно, поэтому она и не загорается.

Когда же выключатель включен, то через его контакты L и L1 фаза напрямую приходит на лампу, минуя цепочку подсветки.

Как установить выключатель.

Чтобы установить выключатель, сначала необходимо снять клавиши.

Пальцем поддеваете выступающий край клавиши, на рисунке стрелка 1, и тянете на себя. Если пальцем не получается, то можно вначале поддеть отверткой, пока не почувствуете, что клавиша тронулась с места.
Сама клавиша, своими штырями 2, входит в отверстия подвижной площадки 3.

Когда обе клавиши будут сняты, подключаете провода к выключателю, как на монтажной схеме ниже.

Теперь Вам осталось вставить его в коробку, и винтами, указанными стрелками, закрепить выключатель.

Ну вот и все. Теперь у Вас не должно возникнуть вопросов, как подключить выключатель с подсветкой.
Удачи!

Подключение выключателя с подсветкой клавиш своими руками

Выключатель с подсветкой удобен тем, что его всегда видно в темноте. Устройство индикации изготавливается со светодиодом или неоновой лампочкой. Существует несколько схем подключения в быту в зависимости от его типа. Чтобы выполнить процедуру монтажа своими руками, нужно знать, как он устроен, какие разновидности его существуют, каковы основные правила установки в каждом конкретном случае, а также как при необходимости отключить или самостоятельно установить подсветительную систему.

Как устроен выключатель с подсветкой

Устройство рассматриваемого выключателя с подсветкой практически не отличается от штатного аналога за исключением одной единственной детали – параллельно подключенного индикатора, работающего от сети 220 вольт. Он подсоединен к основным контактам. Принцип его действия состоит в том, что он коротит цепь (так что даже в положении «выключено» она не находится в полностью разомкнутом состоянии), но при этом питание осуществляется через спираль лампы.

При этом последняя не зажигается, так как ее сопротивление значительно ниже, чем у лед-элемента с резистором (понижающим напряжение) в переключателе. Как только переключатель переходит в положение «включено», нить накала закорачивается, ее сопротивление возрастает и ток перестает поступать на светодиод – подсветка гаснет, а лампочка в люстре светит.

Выключатель с подсветкой состоит из следующих основных элементов:

  1. Корпус с декоративной накладкой, в которой закреплены клавишные накладки.
  2. Входные и выходные клеммы (количество определяется типом выключателя).
  3. Резистор.
  4. Индикатор.

Обратите внимание! Большинство выключателей рассматриваемого типа оснащено встроенной системой подсветки, в то время как в некоторых моделях ее нужно подключать к клеммам самостоятельно при установке.

Виды в зависимости от типа подсветки

Выключатели могут иметь различные виды подсветки:

  1. Резисторную. Роль ограничителя тока в таких моделях выполняет резистор. Сфера применения – для люстр с обычными лампами накала. Со светодиодными и энергосберегающими лампами он совмещается плохо по той причине, что последние в своем составе имеют накопительный драйвер. А так как все они работают от малого тока (который будет пропускать в провод сама подсветка), это будет приводить к их самопроизвольному мерцанию в темноте. Помимо негативного эстетического эффекта, это существенно снизит ресурс самого светоисточника, особенно газоразрядной модификации.
  2. Конденсаторную. В отличие от вышерассмотренного примера устройство содержит накопитель заряда – конденсатор. Главный его плюс – повышение КПД и снижение потребления электроэнергии.
  3. Неоновую. Если во всех вышеприведенных моделях в качестве подсветки для выключателя используются лед-элементы, в этом случае – неоновая лампа. Ее преимущество – хорошая совместимость со светодиодными и люминесцентными светоисточниками.

OLYMPUS DIGITAL CAMERA

Помимо вышерассмотренных конструктивных различий, модели выключателя с подсветкой классифицируются по признаку механизма приведения в действие на следующие виды:

  1. Клавишный. Оснащается одной, двумя, тремя клавишами.
  2. С кнопкой. Оборудуется кнопочным аппаратом включения.

Важно! Стандартные выключатели с подсветкой плохо совместимы с люминесцентными и светодиодными лампами, так как будут приводить к эффекту их мерцания в выключенном состоянии – в темноте. Потребуется доработка. Они также не работают со светильниками, оснащенными электронными регуляторами пуска.

Правила подключения

Существуют как минимум три основные схемы монтажа. Рассмотрим, как правильно подключить выключатель со светодиодной или неоновой подсветкой в каждом случае.

Установка одинарного выключателя

Самый простой вариант – установить одинарный выключатель с подсветкой. Перед всеми работами с электроприборами в целях безопасности необходимо обесточивать сеть, выключив главный рубильник, щиток. Монтажные процедуры проходят в несколько этапов:

  1. К заранее выбранному месту подводится два провода от коммутирующей коробки (см. схему).
  2. Устанавливаются на саморезы, шурупы или дюбеля подрозетник.
  3. Монтируется внутренняя часть выключателя.
  4. Подсоединяются проводники к клеммам на болты.
  5. Надевается декоративная панель.
  6. Вставляется клавиша.
Читать еще:  Цена трансмиссионного масла лукойл

Выключатель с подсветкой готов к действию. Далее нужно включить электропитание и проверить его исправность.

Ниже наглядно приведена схема подключения одноклавишного выключателя с подсветкой:

Монтаж и подключение выключателей с несколькими клавишами

Выключатель с подсветкой с несколькими клавишами отличается от вышеприведенного случая большей функциональностью – управлением сразу несколькими светильниками. Поэтому у него большее число контактов и количество подводимых жил. Установка состоит из следующих шагов:

  1. Предварительно обесточивается электросеть.
  2. К выбранному месту монтажа подводится по одному проводу (либо один многожильный кабель – по числу питаемых светильников).
  3. Монтируется на стену подрозетник.
  4. К нему крепится начинка с основными контактами.
  5. Все проводники подсоединяются к клеммам в соответствии со схемой.
  6. Надевается декоративная панель.
  7. Вставляются клавиши.

После сборки выключатель с подсветкой нужно проверить, подключив питание сети.

В качестве примера приведем схему, как установить выключатель с подсветкой с двумя клавишами:

Подключение проходного выключателя с подсветкой

Данный вариант выключателя с подсветкой дает возможность управлять одним или группой светильников с разных мест. Например, входя в дом нужно включить освещение сразу в прихожей, а из другой комнаты (из спальни) его можно отключить. Таким образом, отпадает необходимость возвращаться по темноте.

Монтаж выключателя такого типа должен выполняться строго в соответствии со схемой. К каждому одноклавишному выключателю нужно проложить по три провода или по одному трехжильному кабелю от распределительной коробки:

  1. Два проводника соединяют выключатели между собой – положения «вкл» и «выкл».
  2. Одна жила (от первого переключателя) соединяется через коммутатор со светильником.
  3. Другая (от второго включателя) проходит через распредкоробку к фазе электрощитка.

С добавлением в цепь дополнительной независимо светящей люстры, соответственно, потребуется монтировать многоклавишный выключатель.

Предлагаем иллюстрацию схемы проходного выключателя с подсветкой:

Отключение подсветки выключателя

Установленный ранее выключатель с подсветкой может привести к некоторым проблемам – самопроизвольному мерцанию ламп или просто мешать спать ночью. Поэтому ее приходится отключать. Сделать это можно в несколько шагов:

  1. Для начала в целях безопасности электромонтажника нужно обесточить всю электросеть помещения, выключив общий рубильник.
  2. Далее нужно снять клавиши.
  3. После чего демонтировать внешнюю панель.
  4. Добравшись до начинки устройства, нужно убедиться, что все контакты не находятся под током (можно проверить индикаторной отверткой или щупом на 220В).
  5. Затем нужно выкрутить крепежные болты, на которых держатся провода.
  6. В электросхеме выключателя нужно найти светодиод или неоновую лампу с резистором и проводами и отсоединить их (если контакты неразъемные – воспользоваться кусачками).
  7. Собрать все элементы (за исключением демонтированной подсветки) в обратной последовательности.
  8. Включить питание сети и проверить исправность переключателя.

Рекомендация! Если система подсветки удаляется с целью предотвращения самопроизвольного моргания светодиодных ламп, решить проблему можно путем замены штатных лед-элемента и резистора на специально подобранные. Однако для этого потребуются знание основ радиотехники и умение обращаться с паяльником.

Как самому установить подсветку в выключатель

Установить подсветку в штатный выключатель вполне доступно своими силами. Однако для этого потребуется приобрести светодиод, резистор (ограничитель тока) и диод (защита лед-элемента от обратного тока), который можно достать из энергосберегающей лампы – там он применяется в качестве диодного мостика. В качестве примера можно привести следующий набор компонентов:

  1. Красный лэд-элемент АL307 (2 Вт).
  2. Резистор в 100 кОм (мощность не менее 1 ватта).
  3. Диодный мост КД521.

Пошаговая инструкция монтажа подсветки:

  1. Демонтировать выключатель, предварительно обесточив электросеть.
  2. Далее нужно собрать компоненты подсветки в одну цепь с помощью паяльника.
  3. Для этого катод диода (отмеченный черным) соединяют с анодом (длинным проводником) лед-элемента.
  4. Резистор припаивается к катоду светодиода и проводнику-удлинителю, идущему на клемму выключателя.
  5. Второй провод припаивается к катоду лед-элемента.
  6. Далее вся собранная схема подключается параллельно к контактам выключателя.
  7. Дополнительно установленные элементы должны быть надежно закреплены внутри корпуса выключателя и не мешать установке накладки и клавиш.
  8. Собрать все компоненты в обратной последовательности.
  9. Включить ток и проверить работу собранной цепи.

Недостатки такой самодельной сборки:

  1. Устанавливая в штатный выключатель самодельную схему подсветки нужно учесть, что в его корпусе нет специального окошка, поэтому его придется просверливать самостоятельно. Если же материал тонкий и прозрачный, то свет будет проходить сквозь него.
  2. Сборка на вышеприведенных элементах будет работать только для лампы накаливания. Люминесцентный светоисточник будет самопроизвольно мерцать, а при сочетании со светодиодом она вообще не будет функционировать из-за его большого сопротивления.
  3. Система с резистором будет потреблять много электроэнергии. Как экономный вариант, в схему можно установить конденсатор (емкостью 1 мкФ), идущий перед резистором. Однако трудности могут заключаться в его установке из-за больших размеров. Оптимальная модель для работы с энергосберегающими светильниками – последовательное подсоединение неоновой лампочки (например, HG1) с резистором 0,5-1 мОм, мощностью от 0,25 ватт.

Совет! Если система подсветки начала моргать, скорее всего, диод пришел в негодность. Его нужно заменить, аккуратно отсоединив от цепи, а затем поставив новый с помощью пайки, не нарушая последовательности схемы.

Основные выводы

Выключатель с подсветкой помимо основных элементов, характерных для штатных аналогов, содержит индикатор (светодиод или неоновую лампочку) и устройства, ограничивающие ток – резистор, диод, конденсатор. Когда он находится в положении «вкл» люстра светит и падение напряжение в дополнительной цепи недостаточно, чтобы зажечь ее освещение. При переходе в состояние «откл» слабый, но достаточный для нее ток проходит через холодную нить накала и лед-элемент активируется.

В зависимости от вида подсветки выключатели делятся на:

  1. Резисторные. Применим для обычных ламп накала.
  2. Конденсаторные. Отличается лучшей функциональностью и меньшим энергопотреблением.
  3. Неоновые. Подходит для всех типов светильников – в том числе и светодиодных, и люминесцентных.

Монтаж выключателя с подсветкой возможен по трем основным схемам:

  1. Одинарный.
  2. Многоклавишный.
  3. Проходной.

Чтобы самостоятельно отключить подсветку, необходимо, обесточив питание всей сети, разобрать выключатель и найти параллельно подключенную его клеммам цепь со светодиодом. Отсоединить ее можно, открутив монтажные болты или воспользовавшись кусачками. Для установки подсветки в штатный выключатель потребуется спаять правильно подобранную лед-элемент, диодный мостик и резистор (+конденсатор) либо неоновую лампочку с резистором и установить их параллельно входному и выходному контакту.

Занятие №2. Переключение светодиода

Автор: AntonChip. Дата публикации: 19 декабря 2010 .

Задача: Разработаем устройство управления светодиодом при помощи одной кнопки. При каждом нажатии на кнопку выход порта к которому подключен светодиод должен менять свое состояние на противоположное. Эта задача легко решается при помощи D-триггера, но все же рассмотрим как ее можно решить при помощи микроконтроллера.

Схема устройства такая же как в занятии 1. Алгоритм программы прост. Сначала настраиваем порты ввода-вывода. Проверяем состояние младшего разряда порта D(PD0) к которому подключена кнопка, а затем выполняем операцию сравнения, где PD0 проверяется на равенстве единице. Если условие выполняется программа переходит к началу цикла, если нет то выполняется еще одна операция сравнения, но уже линии PB0. Сначала оператор сравнения проверяет PB0 на равенство нулю, если результат истина(PB0=0), то разряд сбрасывается в единицу (PB0=1). Если ложно, устанавливается в ноль (PB0=0). Далее в программу вносим процедуру ожидания, без нее наш светодиод будет так часто мигать, что наш глаз не заметит этого. Основной цикл программы будет приостанавливается как только произойдет переключение светодиода и будет возобновляться как только будет отпущена кнопка.

Настраиваем порты ввода вывода как в задании 1:

DDRD = 0x00; //порт D — вход

PORTD = 0xFF; //подключаем нагрузочные резисторы

DDRB = 0xFF; //порт B — выход

PORTB = 0x00; //устанавливаем 0 на выходе

Пишем основной цикл программы. Здесь мы будем использовать условный оператор if else . Этот оператор выполняет различные операции в зависимости от некоторого условия и записывается так:

Условие это любое логическое выражение. Если результат этого выражения истина, то выполняется «набор операторов А», в противном случае выполняется «набор операторов В»

Процедура ожидания нажатия кнопки представляет собой пустой цикл while , и этот цикл будет выполняться до тех пор когда условие истинно. Условием будет равенство линии PD0 единице, т.е до тех пор пока кнопка не нажата.

while ((PIND&(1 if ((PINB&(1 //если PB0 равен нулю

Переключаем состояние PB0 на противоположное

PORTB |= (1 //устанавливаем в PB0 единицу

В противном случае оставляем в PB0 ноль

(1 //устанавливаем в PB0 ноль

Далее снова проверяем состояние кнопки

while ((PIND&(1 //если кнопка нажата будет выполняться пустой цикл

Так же в этой программе можно решить проблему дребезга контактов. Самый простой способ внедрение в программу специальных задержек. Дребезг приводит к тому, что на соответствующем разряде порта D вместо простого перехода с единицы в ноль мы получаем серию импульсов. Чтобы избавиться от этого программе нужно перейти в режим ожидания как только она обнаружит первый нулевой уровень на входе. В режиме ожидания программа приостанавливает все свои действия и просто отрабатывает задержку. Для того чтобы ввести задержку воспользуемся стандартной библиотекой процедуры задержки util/delay.h.

Воспользуемся функцией которая реализует задержку:

_delay_ms(200); //задержка на 200 миллисекунд

Она обеспечивает задержку в любое целое количество микросекунд. Далее эту функцию просто вставляем после каждого цикла while .

Код программы будет таким:

В статье были использованы материалы из книги Белова А.В. «Самоучитель разработчика устройств на AVR»

Радиолюбитель

Последние комментарии

  • Алексей на Расчет фильтров нижних и верхних частот
  • ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах
  • ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах
  • Pit на Компьютер – осциллограф, генератор, анализатор спектра
  • Владислав на Новогодние схемы

Радиодетали – почтой

Управляем светодиодами с помощью кнопок

В прошлой части мы разобрали примеры инициализации МК и создали простую программу. Сейчас немного доработаем программу, задействуем порты ввода, разберем несколько примеров обработки цикла опроса кнопки и применим простую антидребезговую защиту.
Прежде чем начать обращаться с портом и считывать с него данные, необходимо настроить данный вывод МК на вход. При этом стоить помнить, что на выходе выбранного порта установиться логическая единица.
Посмотрев на прошлую программу, можно найти строку настройки порта В на выход:
ser temp ; настраиваем все выводы порта В на выход
out DDRB, temp ;
Для простоты мы оставим PORTB в таком состоянии и проведем настройки порта D.
ldi temp,0b00000011
out PORTD,temp
В данном примере мы настроили выводы PD0 и PD1 на вход.
С настройкой определились, теперь необходимо разобрать простой пример обработчика кнопки. Подключим к выводу PD0 обычную кнопку, которая будет замыкаться на массу.

Вспомним наш цикл main:
main:
sbi portb,5; устанавливаем логическую “1” в PORTB5
rcall delay ;вызываем подпрограмму задержки
cbi portb,5; устанавливаем логический “0” в PORTB5
rcall delay
rjmp main
Здесь обычное переключение порта с логического состояния«0» в «1». Доработаем цикл, чтобы мигание включилось после нажатия на кнопку, подключенную к PD0.
main:
sbic PIND,0
rjmp main
sbi portb,5; устанавливаем логическую “1” в PORTB5
rcall delay ;вызываем подпрограмму задержки
cbi portb,5; устанавливаем логический “0” в PORTB5
rcall delay
rjmp main
Как видно, добавилась строка «sbic PIND,0» и дополнительная метка перехода «rjmp main». Командой «sbic» мы проверяем логическое состояние порта ввода. Если кнопка нажата и на порте установился логический «0», то пропускается следующая строка «rjmp main» и программа переходит к «sbi portb,5». После того, как программа дойдет до «cbi portb,5» и «rcall delay», произойдет возврат на начальную метку «main:». Снова попадаем на цикл опроса порта ввода. Если на сей раз кнопка не будет нажата, на выводе PD0 установиться логическая «1» и цикл замкнется на опросе порта.
Стоить отметить, что такая программа очень простая и годится только для компьютерного моделирования. В реальности из-за переходного процесса в коммутации контактов возникнет дребезг сигнала, который необходимо подавлять.
Простейшим способом для фильтрации сигнала от дребезга является применение задержки опроса порта ввода. Таким образом, мы минимизируем влияние переходных процессов на выполнение нашей программы. Для этого достаточно будет перед строкой «sbic PIND,0» вставить подпрограмму задержки «rcall delay». На рисунке ниже, можно посмотреть выполнение нашей программы.

К каналу А подключен вход PD0, а к каналу В подключен выход PB5. Как видно, цикл мигания сработал несколько раз из-за долгого удержания кнопки.
Так как временной цикл переключения порта, в данном примере, достаточно маленький, около 100мс, то для исключения лишний срабатываний можно доработать программу, отследив задний фронт сигнала.
Для этого нужно будет добавить всего несколько строк в цикл «main».
main:
rcall delay
sbic PIND,0 ;Отслеживаем нажатие кнопки
rjmp main
otpuskaem:
rcall delay ;задержка
sbis PIND,0 ;Отслеживаем отпускание кнопки
rjmp otpuskaem ;

sbi portb,5; устанавливаем логическую “1” в PORTB5
rcall delay ;вызываем подпрограмму задержки
cbi portb,5; устанавливаем логический “0” в PORTB5
rcall delay
rjmp main
Как видно появился дополнительный небольшой цикл отслеживания отпускания кнопки «otpuskaem».
Посмотрим на осциллограмму.

По каналу А видно, что кнопка удерживалась около 1400 мс, при этом не было ни одного срабатывания на выводе PB5. Как только фронт сигнала на выводе PD0 спал, сразу же произошло срабатывание порта PB5.
С помощью такого простого примера обработки входных сигналов, можно с легкостью избавиться от самых больших дребезгов при коммутации. Необходимо лишь будет подстроить временные задержки в подпрограмме «delay», либо же организовать отдельную подпрограмму по подобному принципу.
Допишем несколько строк и сделаем простейшую бегущую строку.
Код полной программы бегущей строки:
.device Attiny2313 ; указываем тип устройства
.include “tn2313def.inc” ; подключаем файл директив МК ATtiny2313
.def temp = r16 ; задаем имя нашему регистру общего назначения
.org 0x0000 ; начало программы с 0 адреса
ldi temp,ramend ; грузим значение ramend в регистр temp
out $3d, temp ;
ser temp ; настраиваем все выводы порта В на выход
out DDRB, temp ; порт на выход
ldi temp,0b00000011
out PORTD,temp

ldi r22,1 ; загружаем в регістр r22 константу 1
out PORTB,r22 ; значение выводим в PORTB

main:
rcall delay
sbic PIND,0 ;Отслеживаем нажатие кнопки
rjmp main
otpuskaem:
rcall delay ;задержка
sbis PIND,0 ;Отслеживаем отпускание кнопки
rjmp otpuskaem ;
rol r22 ;сдвиг влево
out PORTB,r22 ; значение выводим в PORTB
rjmp main
delay:
clr r20
clr r21
d_1:
inc r20
cpi r20,200
brne d_1
d_2:
inc r21
cpi r21,50
brne d_1
ret
Программу можно компилировать и проверять ее в Proteus.
На рисунках ниже видны переключения светодиодов после каждого нажатия на кнопку.

Итак мы разобрали примеры простейшего цикла обработки кнопок, применили защиту от дребезга контактов, написали простую программу бегущей строки.
В следующей статье разберем примеры использования внешних прерываний INT0, INT1. Доработаем существующую программу, избавимся от цикла «main».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector