Camgora.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

K1216eh1 14v 5a как проверить

sxemy-podnial.net

Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.

Светодиодные светильники. Фото 1. Драйвер светодиодного светильника на CL1502. Рис. 1.

В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в [1]. Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.

В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.

В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.

Драйвер светодиодного светильника на B77CI. Рис. 2.

Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».

Фонарь светодиодного светильника. Рис. 3. Внешний вид платы драйвера на B77CI. Фото 2.

Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.

И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.

Как проверить микросхему на работоспособность мультиметром не выпаивая

28 сентября 2018

Время на чтение:

Не все знают, как проверить микросхему на работоспособность мультиметром. Даже при наличии прибора не всегда удается это сделать. Бывает, выявить причину неисправности легко, но иногда на это уходит много времени, и в итоге нет никаких результатов. Приходится заменять микросхему.

Способы проверки

Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.

Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:

  1. Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
  2. Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
  3. Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.

Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.

Влияние разновидности микросхем

Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.

Например:

  1. Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″. Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
  2. Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
  3. Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.

Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.

Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.

Работоспособность транзисторов

Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:

  1. Установить прибор в режим «прозвонки», а затем использовать красный щуп, подключая его к проверяемому элементу. Другой — черный — щуп должен быть приставлен к выводу коллектора.
  2. Сразу после выполнения этих несложных действий на экране устройства появится число, которое будет обозначать пробивное напряжение. Аналогичный уровень можно будет увидеть и при проведении «прозвона» электрической цепи, заключенной между эмиттером и базой. Важно при этом не перепутать щупы: красный должен соприкасаться с базой, а черный — с эмиттером.
  3. Далее можно проверять все эти же выходы транзистора, но уже в обратном подключении: нужно будет поменять местами красный и черный щупы. Если транзистор работает хорошо, то на экране мультиметра должна быть показана цифра «1″, которая говорит о том, что сопротивление в сети является бесконечно большим.

Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.

Конденсаторы, резисторы и диоды

Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.

Чтобы узнать, работает ли резистор схемы, необходимо определить его сопротивление. Значение этой характеристики должно быть больше нуля, однако не являться бесконечно большим. Если при проверке на дисплее прибора отображается не ноль и не бесконечность, значит, резистор работает корректно.

Не отличается особой сложностью и процесс проверки диодов. Сначала нужно определить сопротивление между катодом и анодом в одной последовательности, а затем, поменяв местоположение черного и красного щупов прибора, в другой. Об исправности диода будет говорить стремление отображаемого на экране числа к бесконечности в одном из этих двух случаев и нахождение его на отметке в несколько единиц — в другом.

Индуктивность, тиристор и стабилитрон

Проверяя микросхему на наличие неисправностей, возможно, придется также использовать мультиметр на катушке с током. Если где-то ее провод оборван, то прибор обязательно даст об этом знать. Главное, конечно, правильно его применить.

Все, что необходимо сделать для проверки катушки — замерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не каждый из имеющихся сегодня в продаже мультиметров может проверять индуктивность. Если нужно определить, является ли исправным такой элемент микросхемы, как тиристор, то следует выполнить следующие действия:

  1. Сначала соединить красный щуп с анодом, а черный, соответственно, с катодом. Сразу после этого на экране прибора появится информация о том, что сопротивление стремится к бесконечности.
  2. Выполнить соединение управляющего электрода с анодом и смотреть за тем, как значение сопротивления будет падать от бесконечности до нескольких единиц.
  3. Как только процесс падения завершится, можно отсоединять друг от друга анод и электрод. В результате этого отображаемое на экране мультиметра сопротивление должно остаться прежним, то есть равным нескольким Ом.

Если при проверке все будет именно так, значит, тиристор работает правильно, никаких неисправностей у него нет.

Чтобы проверить стабилитрон, нужно его анод соединить с резистором, а затем включить ток и постепенно поднимать его. На экране прибора должен отображаться постепенный рост напряжения. Через некоторое время этот показатель останавливается в какой-то точке и прекращает увеличиваться, даже если проверяющий по-прежнему увеличивает его посредством блока питания. Если рост напряжения прекратился, значит, проверяемый элемент микросхемы работает правильно.

Проверка микросхемы на исправность — это процесс, который требует серьезного подхода. Иногда можно обойтись без специального прибора и попробовать обнаружить дефекты визуально, используя для этого, например, увеличительное стекло.

Реле регулятор к1216ен1 аналоги

Доставки по г. Екатеринбургу и пригородам НЕТ.

  • Наличный расчет.
  • На расчетный счет Сбербанка РФ из любого банка.
  • На карту Сбербанка с банковской карты через Личный Кабинет СБ, терминалы СБ или отделения СБ.
Интернет-магазинОптКрупный опт
3 000 – 19 999 руб.20 000 – 74 999 руб.75 000 – 149 999 руб.
цена в руб. (с НДС)цена интернет-магазинаопткрупный оптналичие
ЩУ с 611.3702-01 (ан. К1216ЕН1, Я213А1)260199.28192.96в наличии
характеристиказначение
Изготовитель/Торговая маркаЭНЕРГОМАШ
Вес0,04 кг
СтранаБелоруссия

Цены сайта не являются публичной офертой.

Заметили неточность или ошибку в описании – пожалуйста, сообщите нам !

Когда покупал диск тормозной передний на замену, случайно увидел РР К1216ЕН1 (пишут что аналог Я213А2 и взаимозаменяем с родным РР) и купил в зип, а то мало ли. Уже не раз приходилось снимать генератор, когда щётки залипали из-за грязи.

Я конечно ни разу не электрик, насколько этот лучше по ТТХ, чем родной РР? И насколько правдиво даны характеристики?

Технические характеристики регулятора напряжения со щёточным узлом К1216ЕН1 с ЩДР
Диапазон рабочих температур, ˚С
— 50 …+125
Напряжение регулирования с АкБ при t˚ = 25±10˚С и нагрузке генератора 5А, В
14,1 ± 0,3
Максимальный ток выходной цепи, А
5,0
Коэффициент термокомпенсации Uрег, мВ/˚С
-7,0 ± 1,5
Остаточное напряжение на выходе при токе 5А, В
не более 0,8
Максимально допустимое длительное воздействие повышенного напряжения питания, В
30
Максимально допустимые импульсные перенапряжения по ГОСТ 28751, В
тип импульсов — 5, степень жёсткости II, функциональный класс В.
Пороговый ток защиты по цепи возбуждения, А
6,0 … 10,0.

Технические данные 5102.3771.060 (родной для прамо элтро 120А):
Диапазон рабочих температур, °С
-40 . +110
Напряжение регулирования с АБ при t°=(25 ± 2)°С и нагрузке генератора 5А, В
14,1± 0,1
Напряжение регулирования с АБ при t°=(25 ± 2)°С в диапазоне нагрузки генератора от 5А до 0,9·Imax, В
14,1± 0,15
Максимальный ток выходной цепи, А
5,0
Термокомпенсация напряжения регулирования, мВ/°С
-5,0 ± 1,5
Остаточное напряжение на выходе “Ш”, В, не более
0,1
Максимально допустимое длительное воздействие повышенного напряжения питания, В
18,0
Максимально допустимое воздействие повышенного напряжения питания длительностью до 5 мин., В
25,0
Максимально допустимые импульсные перенапряжения по ГОСТ 28751, В
200,0

Потом испытаю, когда накроется родной РР. В интернете отзывов валом, как плохих, так и хороших. Размеры одинаковые с родным. А пока пусть лежит, ждёт своего часа.

Регулятор напряжения со щёточным узлом К1216ЕН1 с ЩДР предназначен для поддержания напряжения бортовой сети автомобиля в заданных пределах во всех режимах работы системы электрооборудования при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды.

Применяемость

Автомобили ВАЗ-2104, ВАЗ -2105, ВАЗ -2107, ВАЗ -2108, ВАЗ – 2109, ВАЗ – 21099 с инжекторными двигателями с генератором 372.3701-03 (или его модификациями).

Возможность использования

Данный регулятор напряжения используется совместно c выпрямительными ограничительными блоками в составе генераторов.

Надежность

С целью повышения надежности регулятора напряжения, в нём предусмотрена защита от короткого замыкания по цепи возбуждения.

Регулятор напряжения имеет однокристальную конструкцию.

Климатическое исполнение

Регуляторы выпускаются в климатическом исполнении О категории 2 по ГОСТ 15150. Регуляторы соответствуют требованиям к устойчивости при климатических воздействиях по ГОСТ 25467. Регуляторы соответствуют требованиям по электромагнитной совместимости ГОСТ 28751.

Габаритный чертеж

Технические характеристики регулятора напряжения со щёточным узлом К1216ЕН1 с ЩДР

Диапазон рабочих температур, ˚С

Напряжение регулирования с АкБ при t˚ = 25±10˚С и нагрузке генератора 5А, В

Максимальный ток выходной цепи, А

Коэффициент термокомпенсации Uрег, мВ/˚С

Остаточное напряжение на выходе при токе 5А, В

Максимально допустимое длительное воздействие повышенного напряжения питания, В

Максимально допустимые импульсные перенапряжения по ГОСТ 28751, В

тип импульсов – 5, степень жёсткости II, функциональный класс В.

Пороговый ток защиты по цепи возбуждения, А

Схема включения регуляторов напряжения со щёточным узлом К1216ЕН1 с ЩДР в составе генераторной установки

Как проверить источник опорного напряжения TL431

Добрый день, друзья!

Сегодня мы с вами познакомимся с еще одной «железкой», которая используется в компьютерной технике. Она применяется не так часто, как, скажем, транзистор или диод, но тоже достойна внимания.

Что это такое – источник опорного напряжения TL431?

В блоках питания персональных компьютеров можно встретить микросхему источника опорного напряжения (ИОН) TL431.

Можно рассматривать ее как регулируемый стабилитрон.

Но это именно микросхема, так как в ней помещено более десятка транзисторов, не считая других элементов.

Стабилитрон – это такая штуковина, которая поддерживает (стремится поддержать) постоянное напряжение на нагрузке. «А зачем это нужно?» – спросите вы.

Дело в том, что микросхемы, из которых состоит компьютер – и большие и малые – могут работать лишь в определенном (не очень большом) диапазоне питающих напряжений. При превышении диапазона весьма вероятен выход их из строя.

Поэтому в блоках питания (не только компьютерных) применяются схемы и компоненты для стабилизации напряжения.

При определенном диапазоне напряжений между анодом и катодом (и определенном диапазоне токов катода) микросхема обеспечивает на своем выходе ref опорное напряжение 2,5 В относительно анода.

Используя внешние цепи (резисторы) можно варьировать напряжение между анодом и катодом в достаточно широких пределах – от 2,5 до 36 В.

Таким образом, нам не нужно искать стабилитроны на определенное напряжение! Можно просто изменять номиналы резисторов и получить нужное нам уровень напряжения.

В компьютерных блоках питания существует источник дежурного напряжения + 5VSB.

Если вилка блока питания вставлена в сеть, оно присутствует на одном из контактов основного питающего разъема — даже если компьютер не включен.

При этом часть компонентов материнской платы компьютера находится под этим напряжением.

Именно с помощью него и происходит запуск основной части блока питания – сигналом с материнской платы. В формировании этого напряжения часто участвует и микросхема TL431.

При выходе ее из строя величина дежурного напряжения может отличаться — и довольно сильно — от номинальной величины.

Чем это может нам грозить?

Если напряжение +5VSB будет больше чем надо, компьютер может «зависать», так как часть микросхем материнской платы питается повышенным напряжением.

Иногда такое поведение компьютера вводит неопытного ремонтника в заблуждение. Ведь он измерил основные питающие напряжения блока питания +3,3 В, +5 В, +12 В – и увидел, что они находятся в пределах допуска.

Он начинает копать в другом месте и тратит массу времени на поиск неисправности. А надо было просто измерить и напряжение дежурного источника!

Напомним, что напряжение +5VSB должно находиться в пределах 5% допуска, т.е. лежать в диапазоне 4,75 – 5,25 В.

Если напряжение дежурного источника будет меньше необходимого, компьютер может вообще не запуститься.

Как проверить TL431?

«Прозвонить» эту микросхему как обычный стабилитрон нельзя.

Чтобы убедиться в ее исправности, нужно собрать небольшую схему для проверки.

При этом выходное напряжение в первом приближении описывается формулой

Vo = (1 + R2/R3) * Vref (см даташит*), где Vref — опорное напряжение, равное 2,5 В.

При замыкании кнопки S1 выходное напряжение будет иметь величину 2,5 В (опорное напряжение), при отпускании ее – величину 5 В.

Таким образом, нажимая и отжимая кнопку S1 и измеряя мультиметром сигнал на выходе схемы, можно убедиться в исправности (или неисправности) микросхемы.

Проверочную схему можно сделать в виде отдельного модуля, используя 16-контактный разъем для DIP-микросхемы с шагом выводов 2,5 мм. Питание и щупы тестера подключаются при этом к выходным клеммам модуля.

Для проверки микросхемы нужно вставить ее в разъем, понажимать кнопку и посмотреть на дисплей тестера.

Если микросхема не вставлена в разъем, выходное напряжение будет равным примерно 10 В.

Вот и все! Просто, не правда ли?

*Даташит – это справочные данные (data sheets) на электронные компоненты. Их можно найти поисковиком в Интернете.

С вами был Виктор Геронда. До встречи на блоге!

K1216eh1 14v 5a как проверить

Ток заряда аккумуляторов 1,5 а

На плате CDQ-F06K1 имеются:
Микросхема HCF4060BE,
Диодный мост из четырёх диодов 1N5408,
Биполярный транзистор S9012,
Реле S3-12A,
Сетевой трансформатор — GS-1415 (25ватт) на выходе 18 вольт переменки.
Предохранитель 5A типа T5AL250V.

Принципиальная схема зарядного устройства:
Доступно только для пользователей

Трансформатор GS-1415, 25 ватт 18 вольт выходное напряжение

Стабилитрон VD6 (1N4742A)

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов
VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3
ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.
Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.
Микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет
биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован просто таймер, который включает реле на время заряда – 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.
Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.
Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки
«Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника
питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя
поступает на стабилитрон 1N4742A через резистор R6.
Далее пониженное и стабилизированное напряжение поступает на 16 вывод
микросхемы U1. Микросхема начинает работать, а также открывается
транзистор S9012, которым она управляет.
Напряжение питания через открытый транзистор S9012 поступает на
обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на
аккумулятор поступает напряжение питания. Начинается заряд аккумулятора.
Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.
Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.
Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По
схеме видно, что при замкнутых контактах электромагнитного реле плюсовое
напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся
подключенной к источнику питания даже после того, как контакты кнопки
будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом
аккумуляторной батареи. Второй вывод подключен к отдельному, третьему
разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При
подключении сменного аккумулятора загорается зелёный светодиод, который
свидетельствует о том, что зарядник готов к работе.
При нажатии кнопки «Пуск» электромагнитное реле замыкает свои
контакты, и аккумулятор подключается к выходу сетевого выпрямителя,
начинается процесс заряда аккумулятора. Загорается красный светодиод, а
зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда
аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет.
Зарядка завершена.
После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.
Такой алгоритм работы примитивен и со временем приводит к так
называемому «эффекту памяти» у аккумулятора. То есть ёмкость
аккумулятора снижается.
Если следовать правильному алгоритму заряда аккумулятора для начала
каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12
аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта
такой режим не реализован.
Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).
Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение
напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для
Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился
ли элемент.
Так же во время зарядки происходит контроль температуры элемента с
помощью термодатчика. Тут же на графике видно, что температура
зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно,
что термовыключатель JDD-45 отслеживает температуру аккумуляторного
блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме
HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за
«эффекта памяти». При этом полная зарядка такого аккумулятора
происходит чуть быстрее, чем за 60 минут.
Как видим из схемотехники, алгоритм заряда не самый оптимальный и со
временем приводит к потере электроёмкости аккумулятора. Поэтому для
зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства:

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.
Для поиска неисправностей нужно, для начала проверить ВСЕ напряжения согласно схеме:
«+» 12 вольт на 16 ножке микросхемы относительно 8 ножки;
«-» 12 вольт на коллекторе транзистора Q1 относительно 16 ножки микросхемы.
Для проверки реле — замкнуть перемычкой коллектор и эмиттер Q1, одновременно контролируя, любым удобным способом, напряжение или ток заряда АКБ.
Если все напряжения в норме — проверяем прозвонкой исправность деталей. Микросхему. — заменой на оригинальную.. Ломаться то, по большому счёту, нечему, главное — ТРАНСФОРМАТОР.
Начинать проверку деталей, нужно с кнопки «старт» которая со временем просто закисает.

Микросхема HCF4060BE (datasheet — http://www.st.com/st-web-. 386.pdf) Эта микросхема – таймер. Кнопкой мы, просто, запускаем его. Таймер, тупо, отсчитывает 1 час и отключает ЗУ! Ни за током заряда, ни за напряжением на АКБ, он, естественно, не следит. Главная задача – включить реле (S3-12A – обмотка 400 ом, питание 12 вольт). Реле же, своими контактами, подключает АКБ к простейшему ЗУ – трансформатор (220/20 при токе нагрузки 1,5 Ампера); диодный мост (4 х IN5408 /400 вольт х 3 Ампера) ; предохранитель; диод FR304( хотя на плате надпись — IN5408) — импульсный /3Ампера х 400В, ну и, собственно – сама АКБ!
Зарядка происходит в жёстком режиме – без ограничения тока.

Если, по каким либо причинам, Вам необходимо СРОЧНО зарядить АКБ шуруповёрта, то единственное условие быстрого восстановления ЗУ до работоспособного состояния– исправность того самого «простейшего ЗУ», о котором говорилось ранее – «трансформатор; диодный мост; предохранитель; импульсный диод; разъём подключения АКБ, ну и собственно сама АКБ! Смотрим схему ( переделка отмечена красным) и отпаиваем любой из выводов резистора R6(отключаем питание таймера), впаиваем перемычку параллельно выводам контактов реле, собираем всё в корпус, втыкаем ЗУ в розетку, АКБ в гнездо зарядного, ждём час — АКБ подключаем к «шурупику»

Проверка работоспособности шим-контроллера.

Проверка работоспособности

шим-контроллера.

Шим-контроллер считают «сердцем» источников питания, но предварительно нужно проверить и другие компоненты блока питания выполнив стандартную последовательность действий по ремонту блока питания (БП):

1) В выключен­ном состоянии источник внимательно осмотреть (особое внимание обра­тить на состояние всех электролитических конденсаторов — они не должны быть вздуты).

2) Проверить исправность предохранителя и элементов входного фильтра БП.

3) Прозвонить на короткое замыкание или обрыв диоды выпрями­тельного моста (эту операцию, как и многие другие, можно выполнить, не вы­паивая диоды из платы). При этом в остальных случаях надо быть уверен­ным, что проверяемая цепь не шунтируется обмотками трансформатора или резистором (в подозрительных случаях, элемент схемы необходимо выпаивать и проверять отдельно).

4) Проверить исправность выходных цепей: электролитических конденсаторов низкочастотных филь­тров, выпрямительных диодов и диодных сборок.

5) Проверить силовые транзисторы высокочастотного преобразователя и тран­зисторов каскада управления. Обязательно проверить возвратные диоды, включенные параллельно электродам коллектор-эмиттер силовых транзисторов.

Эти действия, дают положительный результат в обнаружении только следствия неработоспособности всего блока, но причина неисправности в большинстве случаев находится гораздо глубже. Например, неисправность силовых транзисторов может быть следствием: неисправности цепей схемы за­щиты и контроля, нарушения цепи обратной связи, неисправности ШИМ-преобразователя, выхода из строя демпфирующих RC-цепочек или, межвитковый пробой в силовом трансформаторе. Поэтому, если удается найти неисправный элемент, то желательно пройти все этапы проверок, перечисленные выше (т. к. предохранитель сам по себе ни­когда не сгорает, а пробитый диод в выходном выпрямителе становится причиной «смерти» ещё и силовых транзисторов высокочастотного преобразователя).

В качестве шим-контроллера («сердца» источников питания) долгое время использовали микросхему TL494, а затем и ее аналоги (MB3759, KA7500B … KA3511, SG6105 и др.). Проверку работоспособности такой микросхемы, например, TL494 (рис. 1) можно произвести, не включая блок питания. При этом микросхему необходимо запитать от вне­шнего источника напряжением +9В..+20В. Напряжение подается на вывод 12 относительно выв. 7 — желательно через маломощный выпрямительный диод. Все измерения тоже должны проводиться относительно выв. 7. При подаче питания на микросхему контролируем напряжение на выв. 5. Оно должно быть +5В (±5%) и быть стабильным при изменении напряжения питания на выв. 12 В пределах +9В..+20В. В противном случае не исправен внутренний стабилизатор напряжения микросхемы. Далее осциллогра­фом смотрим напряжение на выв. 5. Оно должно быть пилообразной формы амплитудой 3,2 В (рис. 2). Если сигнал отсутствует или иной формы, то проверить целостность конденсатора и резистора, подключенных к выв. 5 и выв. 6, соответственно. В случае исправности этих элементов микросхему необходимо заменить. После этого проверяем наличие управляющих сигна­лов на выходе микросхемы (выв. 8 и выв. 11). Они должны соответствовать осциллограммам, приведенным на рис. 2. Отсутствие этих сигналов так же говорит о неисправности микросхемы. В случае успешного прохождения ис­пытаний микросхема считается исправной.

Как проверить варистор: внешний осмотр и прозвонка мультиметром

Причины неисправности

Варисторы устанавливают параллельно защищаемой цепи, а последовательно с ним ставят предохранитель. Это нужно для того, чтобы, когда варистор сгорит, при слишком сильном импульсе перенапряжения сгорел предохранитель, а не дорожки печатной платы.

Единственной причиной выхода из строя варистора является резкий и сильный скачок напряжения в сети. Если энергия этого скачка большая, чем может рассеять варистор – он выйдет из строя. Максимальная рассеиваемая энергия зависит от габаритов компонента. Они отличаются диаметром и толщиной, то есть, чем они больше – тем больше энергии способен рассеять варистор.

Скачки напряжения могут возникать при авариях на ЛЭП, во время грозы, при коммутации мощных приборов, особенно индуктивной нагрузки.

Способы проверки

Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже – так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.

Если элемент сгорел и маркировку прочесть невозможно – посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.

Есть три способа проверить варистор быстро и просто:

  1. Визуальный осмотр.
  2. Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
  3. Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.

Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией – элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.

Можно визуально проверить варистор на работоспособность – на нем не должно быть трещин, как на фото:

Следующий способ – проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.

Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов.

Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое – он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.

На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации – в нем наверняка есть и прозвонка.

Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.

Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.

На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.

Варистор: принцип действия, проверка и подключение

Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).

Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.

Принцип действия варисторов

В обычном состоянии варистор имеет очень большое сопротивление (по разным источникам от сотен миллионов Ом до миллиардов Ом). Он почти не пропускает через себя ток. Стоит напряжению превысить допустимое значение, как прибор теряет свое сопротивление в тысячи, а то и в миллионы раз. После нормализации напряжения его сопротивление восстанавливается.

Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.

Принцип работы варистора, если объяснять на пальцах, сводится к следующему. При скачке в электрической сети он выполняет роль клапана, пропуская через себя электрический ток в таком объеме, чтобы снизить потенциал до необходимого уровня. После того как напряжение стабилизируется этот «клапан» закрывается и наша электросхема продолжает работать в штатном расписании. В этом и состоит назначение варистора.

Основные характеристики и параметры

Надо отметить, что это универсальный прибор. Он способен работать сразу со всеми видами тока: постоянным, импульсным и переменным. Это происходит из-за того, что он сам не имеет полярности. При изготовлении используется большая температура, чтобы спаять порошок кремния или цинка.

Параметры, которые необходимо учитывать:

  1. параметр условный, определяется при токе 1мА, В;
  2. максимально допустимое переменное напряжение, В;
  3. максимально допустимое постоянное напряжение, В;
  4. средняя мощность рассеивания, Вт;
  5. максимально импульсная поглощаемая энергия, Дж;
  6. максимальный импульсный ток, А;
  7. емкость прибора в нормальном состоянии, пФ;
  8. время срабатывания, нс;
  9. погрешность.

Чтобы правильно подобрать варистор иногда необходимо учитывать и емкость. Она сильно зависит от размера прибора. Так, tvr10431 имеет 160nF, tvr 14431 370nF. Но даже одинаковые по диаметру детали могут обладать разной емкостью, так S14K275 имеет 440nF.

Виды варисторов

По внешнему виду бывают:

  • пленочные;
  • в виде таблеток;
  • стержневой;
  • дисковый.

Стержневые могут снабжаться подвижным контактом. Выглядеть они будут соответственно названию. Кроме того, бывают низковольтные, 3—200 В и высоковольтные 20 кВ. У первых ток колеблется в пределах 0,0001—1 А. На обозначение по схеме это никак не влияет. В радиоаппаратуре, конечно, применяют низковольтные.

Чтобы проверить работоспособность варистора необходимо обратить внимание на внешний вид. Его можно найти на входе схемы (где подводится питание). Так как через него проходит очень большой ток — по сравнению с защищаемой схемой — это, как правило, сказывается на его корпусе (сколы, обгоревшие места, потемнение лакового покрытия). А также на самой плате: в месте пайки могут отслаиваться монтажные дорожки, потемнение платы. В этом случае его необходимо заменить.

Однако, даже если нет видимых признаков, варистор может быть неисправным. Чтобы проверить его исправность придется отпаять один его вывод, в противном случае будем проверять саму схему. Для прозвонки обычно используется мультиметр (хотя можно, конечно, и мегомметр попробовать, только необходимо учитывать напряжение, которое он создает, чтобы не спалить варистор). Прозвонить его несложно, подключение производится к контактам и измеряется его сопротивление. Тестер ставим на максимально возможный предел и смотрим, чтобы значение было не меньше несколько сотен Мом, при условии, что напряжение мультиметра не превышает напряжение срабатывания варистора.

Впрочем, бесконечно большое сопротивление, при условии, что омметр довольно мощный (если можно это слово использовать), это также говорит о неисправности. При проверке полупроводника необходимо помнить что это всё-таки проводник и он должен показать сопротивление, в противном случае мы имеем полностью сгоревшую деталь.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04. При его применении важно соблюдать полярность.

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

КРЕН, «кренка» — бытовое название интегральных стабилизаторов напряжения серии 142. Размеры её корпуса не позволяют нанести полную маркировку серии (КР142ЕН5А и т.п.), поэтому разработчики ограничились кратким вариантом – КРЕН5А. «Кренки» получили широкое распространение как в промышленности, так и в любительской практике.

Что из себя представляют стабилизаторы напряжения КРЕН 142

Микросхемы серии 142 завоевали популярность из-за простоты получения стабильного напряжения – несложная обвязка, отсутствие регулировок и настроек. Достаточно подать питание на вход, и получить стабилизированное напряжение на выходе. Наибольшую известность и распространение получили нерегулируемые интегральные стабилизаторы в корпусах ТО-220 на напряжение до 15 вольт:

  • КР142ЕН5А, В – 5 вольт;
  • КР142ЕН5Б, Г – 6 вольт;
  • КР142ЕН8А, Г – 9 вольт;
  • КР142ЕН8Б, Д – 12 вольт;
  • КР142 ЕН8В, Е – 15 вольт;
  • КР142 ЕН8Ж, И – 12,8 вольт.

В случаях, когда надо получить более высокое стабильное напряжение, применяются приборы:

  • КР142ЕН9А – 20 вольт;
  • КР42ЕН9Б – 24 вольта;
  • КР142ЕН9В – 27 вольт.

Эти микросхемы также выпускаются в планарном исполнении с несколько отличающимися электрическими характеристиками.

Серия 142 включает в себя и другие интегральные стабилизаторы. К микросхемам с регулируемым выходным напряжением относятся:

  • КР142ЕН1А, Б – с пределами регулирования от 3 до 12 вольт;
  • КР142ЕН2Б – с пределами 12…30 вольт.

Эти приборы выпускаются в корпусах с 14 выводами. Также в эту категорию входят трехвыводные стабилизаторы с одинаковым выходным диапазоном 1,2 – 37 вольт:

  • КР142ЕН12 положительной полярности;
  • КР142ЕН18 отрицательной полярности.

В серию входит микросхема КР142ЕН6 – двуполярный стабилизатор с возможностью регулировки выходного напряжения от 5 до 15 вольт, а также включение в качестве нерегулируемого источника ±15 вольт.

Все элементы серии имеют встроенную защиту от перегрева и короткого замыкания на выходе. А переполюсовку по входу и подачу внешнего напряжения на выход они не любят – время жизни в таких случаях исчисляется секундами.

Модификации микросхемы

Модификации микросхем, входящих в серию, отличаются корпусом. Большинство однополярных нерегулируемых стабилизаторов выполнено в «транзисторном» корпусе TO-220. Он имеет три вывода, этого хватает не во всех случаях. Поэтому часть микросхем выпускались в многовыводных корпусах:

  • DIP-14;
  • 4-2 – то же самое, но в керамической оболочке;
  • 16-15.01 – планарный корпус для монтажа на поверхность (SMD).

В таких исполнениях выпускаются, в основном, регулируемые и двуполярные стабилизаторы.

Основные технические характеристики

Кроме выходного напряжения, для стабилизатора важен ток, который он может обеспечить под нагрузкой.

Тип микросхемыНоминальный ток, А
К(Р)142ЕН1(2)0,15
К142ЕН5А, 142ЕН5А3
КР142ЕН5А2
К142ЕН5Б, 142ЕН5Б3
КР142ЕН5А2
К142ЕН5В, 142ЕН5В, КР142ЕН5В2
К142ЕН5Г, 142ЕН5Г, КР142ЕН5Г2
К142ЕН8А, 142ЕН8А, КР142ЕН8А1,5
К142ЕН8Б, 142ЕН8Б, КР142ЕН8Б1,5
К142ЕН8В, 142ЕН8В, КР142ЕН8В1,5
КР142ЕН8Г1
КР142ЕН8Д1
КР142ЕН8Е1
КР142ЕН8Ж1,5
КР142ЕН8И1
К142ЕН9А, 142ЕН9А1,5
К142ЕН9Б, 142ЕН9Б1,5
К142ЕН9В, 142ЕН9В1,5
КР142ЕН181,5
КР142ЕН121,5

Этих данных достаточно для предварительного решения о возможности применения того или иного стабилизатора. Если нужны дополнительные характеристики, их можно найти в справочниках или в интернете.

Назначение выводов и принцип работы

По принципу работы все микросхемы серии относятся к линейным регуляторам. Это означает, что входное напряжение распределяется между регулирующим элементом (транзистором) стабилизатора и нагрузкой так, что на нагрузке падает напряжение, которое задается внутренними элементами микросхемы или внешними цепями.

Если входное напряжение увеличивается, транзистор прикрывается, если уменьшается – приоткрывается таким образом, чтобы на выходе напряжение оставалось постоянным. При изменении тока нагрузки стабилизатор отрабатывает так же, поддерживая неизменным напряжение нагрузки.

У этой схемы есть недостатки:

  1. Через регулирующий элемент постоянно протекает ток нагрузки, поэтому на нём постоянно рассеивается мощность P=Uрегулятора⋅Iнагрузки. Эта мощность расходуется впустую, и ограничивает КПД системы – он не может быть выше Uнагрузки/ Uрегулятора.
  2. Напряжение на входе должно превышать напряжение стабилизации.

Но простота применения, дешевизна прибора перевешивают недостатки, и в диапазоне рабочих токов до 3 А (и даже выше) что-то более сложное применять бессмысленно.

У регуляторов напряжения с фиксированным напряжением, а также у регулируемых стабилизаторов новых разработок (К142ЕН12, К142ЕН18) в трех- и четырехвыводном исполнении выводы обозначаются цифрами 17,8,2. Такое нелогичное сочетание выбрано, очевидно, для соответствия выводов с микросхемами в корпусах DIP. На самом деле такая «дремучая» маркировка сохранилась только в технической документации, а на схемах пользуются обозначениями выводов, соответствующим зарубежным аналогам.

Обозначение по технической документацииОбозначение на схемахНазначение вывода
Стабилизатор с фиксированным напряжениемСтабилизатор с регулируемым напряжениемСтабилизатор с фиксированным напряжениемСтабилизатор с регулируемым напряжением
17InВход
8GNDADJОбщий проводОпорное напряжение
2OutВыход

Микросхемы старой разработки К142ЕН1(2) в 16-выводных планарных корпусах имеют следующее назначение выводов:

НазначениеНомер выводаНомер выводаНазначение
Не используется116Вход 2
Фильтр шума215Не используется
Не используется314Выход
Вход413Выход
Не используется512Регулировка напряжения
Опорное напряжение611Токовая защита
Не используется710Токовая защита
Общий89Выключение

Недостатком планарного исполнения служит большое количество излишних выводов прибора.
Стабилизаторы КР142ЕН1(2) в корпусах DIP14 имеют другое назначение выводов.

НазначениеНомер выводаНомер выводаНазначение
Токовая защита114Выключение
Токовая защита213Цепи коррекции
Обратная связь312Вход 1
Вход411Вход 2
Опорное напряжение510Выход 2
Не используется69Не используется
Общий78Выход 1

У микросхем К142ЕН6 и КР142ЕН6, выпускаемых в разных вариантах корпуса с теплоотводом и однорядным расположением выводов, цоколёвка следующая:

Номер выводаНазначение
1Вход сигнала регулировки обоих плеч
2Выход «-»
3Вход «-»
4Общий
5Коррекция «+»
6Не используется
7Выход «+»
8Вход «+»
9Коррекция «-»

Пример типовой схемы подключения

Для всех нерегулируемых однополярных стабилизаторов типовая схема одинакова:

С1 должен иметь ёмкость от 0,33 мкФ, С2 – от 0,1. В качестве С1 может быть использован фильтрующий конденсатор выпрямителя, если проводники от него до входа стабилизатора имеют длину не более 70 мм.

Двуполярный стабилизатор К142ЕН6 обычно включается так:

Для микросхем К142ЕН12 и ЕН18 напряжение на выходе устанавливается резисторами R1 и R2.

Для К142ЕН1(2) типовая схема включения выглядит сложнее:

Кроме типовых схем включения интегральные для стабилизаторов серии 142 существуют и другие варианты, позволяющие расширить область применения микросхем.

Какие существуют аналоги

Для некоторых приборов серии 142 существуют полные зарубежные аналоги:

Микросхема К142Зарубежный аналог
КРЕН12LM317
КРЕН18LM337
КРЕН5А(LM)7805C
КРЕН5Б(LM)7805C
КРЕН8А(LM)7806C
КРЕН8Б(LM)7809C
КРЕН8В(LM)78012C
КРЕН6(LM)78015C
КРЕН2БUA723C

Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему. Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует. Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.

Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5). Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г. И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.

Как проверить работоспособность микросхем КРЕН

Микросхемы серии 142 имеют достаточно сложное устройство, поэтому мультиметром однозначно проверить её работоспособность невозможно. Единственный способ – собрать макет реального включения (на плате или навесным монтажом), который включает в себя, как минимум, входную и выходные ёмкости, подать на вход питание и проверить напряжение на выходе. Оно должно соответствовать паспортному.

Несмотря на доминирование на рынке микросхем зарубежного производства, приборы серии 142 удерживают свои позиции за счет качества изготовления и других потребительских свойств.

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

Что такое диодный мост, принцип его работы и схема подключения

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Защита от перенапряжения: что лучше стабилизатор или реле контроля напряжения?

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector